
INVESTIGATION OF EFFECT OF DIFFERENT RUN�TIME
DISTRIBUTIONS ON SMARTNET PERFORMANCE

Robert Kyle Armstrong� Jr� � Major� United States Marine Corps
B�S�� United States Naval Academy� ����

This thesis investigates� using in�line simulation� the e�ect of non�deterministic

runtime distributions on the performance of SmartNet�s schedule execution using the

Opportunistic Load Balancing �OLB� Algorithm� the Limited Best Assignment �LBA�

Algorithm� an O�mn�� Greedy Algorithm� and an O�mn� Greedy Algorithm� Smart�

Net is a framework for scheduling jobs and machines in a heterogeneous computing

environment� Its major strength is its use of both current machine loads and pre�

dicted job�machine performance when generating schedules� Schedules are built to

meet various Quality of Service requirements using the above algorithms among others�

We enhanced SmartNet�s simulator so that the runtime distributions could be used for

experimentation� The distributions were generated using derivations from our study

on NAS Benchmarks� Experiments were run for various categories of job�machine

heterogeneity to compare the algorithms which account for both load and expected

performance �the Greedy algorithms� against OLB and LBA�

For all categories of heterogeneity� the greedy algorithms outperformed the

other two algorithms for both truncated Gaussian and exponential distributions� For

these same distributions� the O�mn� Greedy algorithm performed as well as the

O�mn�� Greedy algorithm when the heterogeneity of jobs and machines was high�

Master Of Science In Computer Science

Advisor� Debra Hensgen� Department of Computer Science
Second Reader� Taylor Kidd� Department of Computer Science

Unclassi�ed�A



Approved for public release	 distribution is unlimited�

INVESTIGATION OF EFFECT OF DIFFERENT
RUN�TIME DISTRIBUTIONS ON SMARTNET

PERFORMANCE

Robert Kyle Armstrong� Jr�
Major� United States Marine Corps

B�S�� United States Naval Academy� 	
��

Submitted in partial ful�llment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September ���


Author


Robert Kyle Armstrong� Jr�

Approved by


Debra Hensgen� Thesis Advisor

Taylor Kidd� Second Reader

Ted Lewis� Chairman� Department of Computer Science

iii



iv



ABSTRACT

This thesis investigates� using in�line simulation� the e�ect of non�deterministic

runtime distributions on the performance of SmartNet�s schedule execution using the

Opportunistic Load Balancing �OLB� Algorithm� the Limited Best Assignment �LBA�

Algorithm� an O�mn�� Greedy Algorithm� and an O�mn� Greedy Algorithm� Smart�

Net is a framework for scheduling jobs and machines in a heterogeneous computing

environment� Its major strength is its use of both current machine loads and pre�

dicted job�machine performance when generating schedules� Schedules are built to

meet various Quality of Service requirements using the above algorithms among others�

We enhanced SmartNet�s simulator so that the runtime distributions could be used for

experimentation� The distributions were generated using derivations from our study

on NAS Benchmarks� Experiments were run for various categories of job�machine

heterogeneity to compare the algorithms which account for both load and expected

performance �the Greedy algorithms� against OLB and LBA�

For all categories of heterogeneity� the greedy algorithms outperformed the

other two algorithms for both truncated Gaussian and exponential distributions� For

these same distributions� the O�mn� Greedy algorithm performed as well as the

O�mn�� Greedy algorithm when the heterogeneity of jobs and machines was high�

v



vi



TABLE OF CONTENTS

I� INTRODUCTION � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

A� BACKGROUND INFORMATION � � � � � � � � � � � � � � � � �

B� STATEMENT OF PROBLEM � � � � � � � � � � � � � � � � � � � �

C� GOAL � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

D� THESIS ORGANIZATION � � � � � � � � � � � � � � � � � � � � � 


II� SMARTNET � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

A� INTRODUCTION � � � � � � � � � � � � � � � � � � � � � � � � � 		

B� BACKGROUND INFORMATION � � � � � � � � � � � � � � � � 		

C� SMARTNET�S PURPOSE � � � � � � � � � � � � � � � � � � � � � 	�

	� Goal of SmartNet � � � � � � � � � � � � � � � � � � � � � � 	�

�� Functionality � � � � � � � � � � � � � � � � � � � � � � � � � 	�

D� SMARTNET ARCHITECTURE � � � � � � � � � � � � � � � � � 	�

	� SmartNet Processes � � � � � � � � � � � � � � � � � � � � � 	�

�� SmartNet Algorithms � � � � � � � � � � � � � � � � � � � � 	�

E� SMARTNET PERFORMANCE � � � � � � � � � � � � � � � � � � ��

F� EXAMPLES � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

	� Example 	
 Opportunistic Load Balancing � � � � � � � � ��

�� Example �
 Limited Best Assignment � � � � � � � � � � � ��

�� Example �
 Greedy Algorithm � � � � � � � � � � � � � � � ��

III� DISCRETE EVENT SIMULATION � � � � � � � � � � � � � � � � �


A� INTRODUCTION � � � � � � � � � � � � � � � � � � � � � � � � � ��

B� BACKGROUND INFORMATION � � � � � � � � � � � � � � � � ��

C� DISCRETE EVENT SIMULATION � � � � � � � � � � � � � � � ��

	� Overview � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

�� An Example of Discrete Event Simulation � � � � � � � � � ��

D� RANDOM VARIATES � � � � � � � � � � � � � � � � � � � � � � � ��

vii



	� Random Versus Pseudo�random Numbers � � � � � � � � � �


�� Random Variates and Distribution Characteristics � � � � ��

�� Generating Random Variates � � � � � � � � � � � � � � � � �	

E� CONCLUDING REMARKS � � � � � � � � � � � � � � � � � � � � ��

IV� THE SMARTNET SIMULATOR � � � � � � � � � � � � � � � � � � �


A� INTRODUCTION � � � � � � � � � � � � � � � � � � � � � � � � � ��

B� BACKGROUND INFORMATION � � � � � � � � � � � � � � � � ��

C� DISCRETE EVENT SIMULATION AND THE SMARTNET

SIMULATOR � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

	� Advantages of the SmartNet Simulator � � � � � � � � � � ��

�� Limitation of the Original SmartNet Simulator � � � � � � ��

D� ALLEVIATING THE SMARTNET SIMULATOR LIMITATION �	

	� Enhancements Made to the SmartNet Simulator � � � � � �	

E� CONCLUDING REMARKS � � � � � � � � � � � � � � � � � � � � ��

V� EXPERIMENTS � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �


A� INTRODUCTION � � � � � � � � � � � � � � � � � � � � � � � � � ��

B� PARAMETERS � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

	� Job Run�time Distributions � � � � � � � � � � � � � � � � � ��

�� Categories of Heterogeneity � � � � � � � � � � � � � � � � � ��

C� SIMULATION EXPERIMENTS � � � � � � � � � � � � � � � � � � �


	� Baseline Experiments � � � � � � � � � � � � � � � � � � � � ��

�� Simulation Experiments where Jobs Ran for Times Dif�

ferent from the Predicted Run�times � � � � � � � � � � � � ��

D� DISCUSSION � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

	� Theoretical Limits � � � � � � � � � � � � � � � � � � � � � � ��

�� O�mn� Fast Greedy versus O�mn�� Greedy � � � � � � � � ��

�� Grouped Submissions versus Uniformly Distributed� Se�

quential Submissions � � � � � � � � � � � � � � � � � � � � ��

viii



�� Mixed Heterogeneity Matrices � � � � � � � � � � � � � � � �


E� CONCLUSION � � � � � � � � � � � � � � � � � � � � � � � � � � � 
	

VI� SUMMARY AND FUTURE WORK � � � � � � � � � � � � � � � � �


A� SUMMARY � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 
�

B� FUTURE WORK � � � � � � � � � � � � � � � � � � � � � � � � � � 
�

APPENDIX A� SMARTNET DATABASE FORMAT � � � � � � � � � ��

APPENDIX B� ENHANCEMENTS MADE TO EXISTING SMART�

NET CODE � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

	� INTRODUCTION � � � � � � � � � � � � � � � � � � � � � � � � � 	�	

�� SERVER�SIMULATOR�JOBSTARTEVENT�CC � � � � � � � � 	�	

�� SERVER�SN�LOG�SN�LOG�C � � � � � � � � � � � � � � � � � � 	��

�� SN�SUBMIT�EXTERNAL�C � � � � � � � � � � � � � � � � � � � 	��

�� SN�SUBMIT�SUBMIT�C � � � � � � � � � � � � � � � � � � � � � � 	��

�� SN�SUBMIT�README � � � � � � � � � � � � � � � � � � � � � � 	��

�� SERVER�SRC�MODELMACHINE�H � � � � � � � � � � � � � � � 	��

�� SERVER�SRC�MODELMACHINE�CC � � � � � � � � � � � � � � 	��

APPENDIX C� ADDITIONAL CODE FOR THE SMARTNET SIM�

ULATOR � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

	� INTRODUCTION � � � � � � � � � � � � � � � � � � � � � � � � � 	�


�� SERVER�ARMSTRONG�MAKEFILE � � � � � � � � � � � � � � 	�


�� SERVER�ARMSTRONG�MYRAND�H � MYRAND�CC � � � � 			

�� SERVER�ARMSTRONG�DISTRIBUTION�H� DISTRIBUTION�CC		�

�� SERVER�ARMSTRONG�RANDOM GENERATOR�H� RAN�

DOM GENERATOR�CC � � � � � � � � � � � � � � � � � � � � � � 	��

APPENDIX D� CODE FOR RUNTIME DISTRIBUTION TESTS � ���

	� CODE FOR COUNTING SORT � � � � � � � � � � � � � � � � � 	��

APPENDIX E� SIMULATION EXPERIMENTAL DATA � � � � � � � ��


	� HETEROGENEITY QUADRANT DATA � � � � � � � � � � � � 	��

ix



APPENDIX F� SIMULATION EXPERIMENT RESULTS � � � � � � ��


	� ZERO�VARIANCE SIMULATION EXPERIMENT RESULTS � 	��

�� RESULTS OF SIMULATION EXPERIMENTSWHERE JOBS

RAN FOR TIMES DIFFERENT FROM PREDICTED TIMES� 	��

a� Exponential Run�time Distribution Experiment Results � 	��

b� Truncated Gaussian Run�time Distribution Experiment

Results � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	�


�� ADDITIONAL EXPERIMENTS � � � � � � � � � � � � � � � � � 	��

a� Comparison of Baseline Run�time and Theoretical Best

Case Run�time � � � � � � � � � � � � � � � � � � � � � � � � 	��

b� Greedy versus Fast Greedy Performance � � � � � � � � � 	�	

c� Grouped versus Sequential Job Request Methods � � � � � 	�	

APPENDIX G� HOW TO RUN SMARTNET � � � � � � � � � � � � � � ��


	� GETTING STARTED � � � � � � � � � � � � � � � � � � � � � � � 	��

a� Unpacking the Code � � � � � � � � � � � � � � � � � � � � � 	��

b� Setting the Environment � � � � � � � � � � � � � � � � � � 	��

c� Compiling SmartNet � � � � � � � � � � � � � � � � � � � � 	��

�� USING THE SMARTNET SIMULATOR � � � � � � � � � � � � � 	��

a� Files � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	��

b� Commands � � � � � � � � � � � � � � � � � � � � � � � � � � 	��

c� Scripts � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	��

�� RUNNING SMARTNET IN SIMULATION MODE � � � � � � � 	��

�� EXAMPLE COMMAND FILES � � � � � � � � � � � � � � � � � � 	�


a� Command File � The Random Method � � � � � � � � � � 	�


b� Command File � The Grouped Method � � � � � � � � � 	��

�� EXAMPLE DATABASE FILE � � � � � � � � � � � � � � � � � � � 	��

�� EXAMPLE SCRIPTS � � � � � � � � � � � � � � � � � � � � � � � 	�	

a� Script for Starting and Running SmartNet
 	���	�sh � � � 	�	

x



b� Script for Running Experiments
 tt����sh � � � � � � � � � 	��

�� EXAMPLE PARSE SCRIPTS � � � � � � � � � � � � � � � � � � � 	�


a� Parsing Run�Time Data From Log Files
 parselog�pl � � � 	�


b� Collecting Run�Time Data � � � � � � � � � � � � � � � � � 	��

LIST OF REFERENCES � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

INITIAL DISTRIBUTION LIST � � � � � � � � � � � � � � � � � � � � � � ��


xi



xii



LIST OF FIGURES

	� The Random Nature of Artillery Fires� � � � � � � � � � � � � � � �

�� Single Instruction� Multiple Data �SIMD� Machine Architecture 	�

�� The Metacomputer Concept� Many HPC sites are connected to

form a large� powerful� distributed virtual machine� � � � � � � � 	�

�� SmartNet Architecture� � � � � � � � � � � � � � � � � � � � � � � � 	�

�� Example 	
 An OLB Schedule� � � � � � � � � � � � � � � � � � � � ��

�� Example �
 An LBA Schedule� � � � � � � � � � � � � � � � � � � � ��

�� Example �
 A SmartNet Schedule� � � � � � � � � � � � � � � � � � ��

�� Ways to study a system� � � � � � � � � � � � � � � � � � � � � � � ��


� Flow of control in Discrete Event Simulation � � � � � � � � � � � ��

	�� Logistic Example
 Air Transport � � � � � � � � � � � � � � � � � � ��

		� An Example of a Gaussian Distribution � � � � � � � � � � � � � � �	

	�� An Example of an Exponential Distribution � � � � � � � � � � � ��

	�� Real versus Simulated Time� � � � � � � � � � � � � � � � � � � � � �


	�� Forked Counting Sort� caesar� � � � � � � � � � � � � � � � � � � � �


	�� Forked Counting Sort� elvis� � � � � � � � � � � � � � � � � � � � ��

	�� Counting Sort� caesar� single processor� � � � � � � � � � � � � � �	

	�� Counting Sort� elvis� single processor� � � � � � � � � � � � � � � ��

	�� epA	 NAS Benchmark� Executable Residing on Local Disk� � � � ��

	
� epA	 NAS Benchmark� Files obtained over a lightly loaded network� ��

��� Heterogeneity and Consistency� � � � � � � � � � � � � � � � � � � ��

�	� Consistency between jobs and machines� � � � � � � � � � � � � � ��

��� Inconsistency between two jobs and four machines� � � � � � � � �


��� Baseline Run�time Distribution Results� High�Job� High Ma�

chine Heterogeneity� 	���	� � � � � � � � � � � � � � � � � � � � � � ��

xiii



��� Baseline Run�time Distribution Results� High�Job� Low�Machine

Heterogeneity� 	���	� � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Baseline Run�time Distribution Results� Low�Job� High�Machine

Heterogeneity� 	���	� � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Baseline Run�time Distribution Results� Low�Job� Low�Machine

Heterogeneity� 	���	� � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Baseline Run�timeDistribution Results� High�Job� High�Machine�

Consistent Heterogeneity� 	���	� � � � � � � � � � � � � � � � � � � ��

��� Baseline Run�timeDistribution Results� Low�Job� High�Machine�

Consistent Heterogeneity� 	���	� � � � � � � � � � � � � � � � � � � ��

�
� Exponential Run�timeDistribution Results� Low�Job� High�Machine

Heterogeneity� ������ � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Exponential Run�timeDistribution Results� High�Job� High�Machine�

Consistent Heterogeneity� ������ � � � � � � � � � � � � � � � � � � ��

�	� Exponential Run�timeDistribution Results� Low�Job� High�Machine�

Consistent Heterogeneity� ������ � � � � � � � � � � � � � � � � � � �


��� Truncated Gaussian Run�time Distribution Results� Low�Job�

High�Machine� Consistent Heterogeneity� ������ � � � � � � � � � ��

��� Truncated Gaussian Run�time Distribution Results� Low�Job�

High�Machine� Consistent Heterogeneity� ������ � � � � � � � � � �	

��� Truncated Gaussian Run�time Distribution Results� Low�Job�

High�Machine� Consistent Heterogeneity� ������ � � � � � � � � � �	

��� Theoretical Best versus Baseline Completion Time� High�Job�

Low�Machine Heterogeneity� � � � � � � � � � � � � � � � � � � � � ��

��� Theoretical Best versus Baseline Completion Time� Low�Job�

Low�Machine Heterogeneity� � � � � � � � � � � � � � � � � � � � � ��

��� Greedy versus Fast Greedy� Baseline Results� � � � � � � � � � � � ��

xiv



��� Greedy versus Fast Greedy� Exponential Run�time Variance Ex�

periments� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

�
� Greedy versus Fast Greedy� Truncated Gaussian Run�time Vari�

ance Experiments� � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Grouped versus Sequential Job Requests� � � � � � � � � � � � � � ��

�	� Greedy Performance� Grouped and Sequential Methods� � � � � � �


��� Fast Greedy Performance� Grouped and Sequential Methods� � � 
�

��� Directory Structure Used For Experiments� � � � � � � � � � � � � 	�


xv



xvi



LIST OF TABLES

I� SmartNet Performance
 Average values of t� � � � � � � � � � � � �	

II� SmartNet Performance
 Average values of t compared to the

lower bound� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

III� Job Run�times used in all examples� � � � � � � � � � � � � � � � � ��

IV� Parameters of Various Distribution Functions� � � � � � � � � � � ��

V� Con�guration of SGI machines caesar and elvis� � � � � � � � � ��

VI� High�Job� High�Machine Heterogeneity Matrix� � � � � � � � � � � ��

VII� A Mixed Heterogeneity Matrix� � � � � � � � � � � � � � � � � � � 
	

VIII� Site Object Database Format � � � � � � � � � � � � � � � � � � � � 



IX� Machine Object Database Format � � � � � � � � � � � � � � � � � 



X� Model Object Database Format � � � � � � � � � � � � � � � � � � 	��

XI� Model�Machine Object Database Format � � � � � � � � � � � � � 	��

XII� High�Job� High�Machine Heterogeneity� � � � � � � � � � � � � � � 	��

XIII� High�Job� Low�Machine Heterogeneity� � � � � � � � � � � � � � � 	��

XIV� Low�Job� High�Machine Heterogeneity� � � � � � � � � � � � � � � 	��

XV� Low�Job� Low�Machine Heterogeneity� � � � � � � � � � � � � � � � 	��

XVI� High�Job� High�Machine� Consistent Heterogeneity� � � � � � � � 	��

XVII� Low�Job� High�Machine� Consistent Heterogeneity� � � � � � � � � 	��

XVIII�Baseline Simulation Experiment Results� � � � � � � � � � � � � � 	��

XIX� Exponential Experiment Results� � � � � � � � � � � � � � � � � � 	��

XX� Truncated Gaussian Experiment Results� � � � � � � � � � � � � � 	�


XXI� Theoretical Best versus Baseline Completion Time� � � � � � � � 	��

XXII� Greedy versus Fast Greedy� Sequential Method� � � � � � � � � � 	�	

XXIII�Greedy versus Fast Greedy� Grouped Method � � � � � � � � � � 	�	

xvii



xviii



I� INTRODUCTION

This thesis investigates the e�ect of non�deterministic run�times on the per�

formance of jobs scheduled by SmartNet �Ref� 	� �� �� �� in a heterogeneous computing

environment� It has already been shown that if jobs are scheduled by SmartNet� and

they run for exactly the expected amount of time� that the overall performance of the

system is improved� SmartNet currently computes the expected run�time of a job by

averaging previous run�times which it stores in its database after a job terminates�

However� jobs rarely run for exactly this expected amount of time� even if a job is run

repeatedly with exactly the same parameters� on exactly the same machine� run�times

may di�er due to memory stalls� Under less ideal conditions� when a job is using a

data �le located on a remote �le server� run�time variations become even more pro�

nounced� When the value of parameters are changed� the run�time can be drastically

di�erent� SmartNet attempts to account for parameter value changes using a concept

called �compute characteristics� �Ref� ��� but it will often be the case that� at any

given time� at least one job will be running with some unidenti�ed compute charac�

teristics� Therefore� this thesis seeks to identify the expected performance of jobs in

computing environments where there are changing or unknown compute characterist�

ics� In particular� it focuses on the time of completion of the last job� It compares

SmartNet performance under these conditions against performance without Smart�

Net� Speci�cally� it compares some of SmartNet�s intelligent algorithms� which use

expected run�times� against another scheduling algorithm that does not use expected

run�times
 Opportunistic Load Balancing �OLB�� SmartNet�s intelligent algorithms

have been shown to outperform this algorithm when jobs do run for exactly their ex�

pected run�times� this thesis will document the comparison of SmartNet against this

algorithm when the actual run�times of jobs are non�deterministic�

To relate the research in this thesis to other �elds� we now present an example

that demonstrates how we can convert parameters that are typically random and un�

	



controllable into more predictable and expected factors� The idea is to be able to

exercise more control on the input to an algorithm that incorporates multiple para�

meters� many of which may be environmental factors� so that the unpredictable nature

of the algorithm�s output is lessened� To some degree� an algorithm can then be made

more useful�

A real world example of this situation is that of providing indirect �re� Mortars

and artillery are indirect �re weapons� Indirect �re is the delivery of explosive ord�

nance along a parabolic or near�parabolic path from the weapon to the target� This is

di�erent from the way ri�es� pistols� and tanks deliver ordnance� which is along a line

of sight path from the weapon to the target� The parabolic path of artillery allows

ordnance to be delivered across great distances and over signi�cant terrain such as

hills� A parabolic path� however� allows more factors� many of them uncertain� to

in�uence the outcome of an indirect round� It is the way that these uncertainties are

accounted for that is the crux of our example�

Figure 	 shows how indirect weapon �res might impact against a target� The

nature of indirect �re causes impacts near the target to disperse mostly along the

gun�target line but also somewhat left and right of that line� The resulting footprint

is basically an elliptical pattern with the majority of the impacts lying near the center

of the ellipse� This is because rounds �red indirectly are subject to the e�ects of wind�

temperature� and the rotation of the earth� Because velocities of rounds are slower� the

time of �ight of a round is longer� and it is subject to e�ects not normally considered

by a line of sight weapon system� There are also factors particular to the weapon

system that can cause rounds to impact with limited precision� as shown in Figure 	�

The temperature of the gun tube� the temperature of the powder used to �re the round

from the tube� and the seat of the artillery round against the inside of the tube all

e�ect whether the round is �red optimally� If a round is �red optimally� we expect

that round to hit the target� If factors such as tube and powder temperature or the

e�ects of wind at higher elevations are not considered in the solution� we expect the

�



Dispersion of Artillery Rounds

Itermittent Peak

Path of Artillery Round

From Gun to Target

Indirect Fire

Weapon

Gun - Target Line

Figure 	� The Random Nature of Artillery Fires�

round may miss�

The artillery community strives to reduce the number of unknown variables

present in indirect �re� There are parameters that are external to the artillery mech�

anism that are major in�uences upon the outcome� These in�uences can be measured

and their e�ect compensated for� The artillery community has taken a considerable

amount of time and e�ort to understand� develop tools for measuring� and compensate

for these in�uences� If consistent and timely measurements are made and applied to

the artillery solution� we can minimize the a�ects of outside in�uences and shoot ��rst

round� on target� with impunity�

It is the reduction of unknowns which is the eventual goal of this thesis� That

is� this research strives to understand the external in�uences upon SmartNet that

�



might keep it from performing optimally and to determine how best to compensate

for these in�uences� This thesis begins upon this problem by striving to understand

the impact of unknowns upon SmartNet�s schedules�

A� BACKGROUND INFORMATION

Scheduling� in general� is a di�cult problem �Ref� ��� As an example� consider

the task of scheduling troop and equipment movement from the United States to the

east coast of Africa� We describe our example in terms of optimization theory� There

are many factors that need to be considered in order to create a schedule for troop

and equipment movement� One of the �rst and most obvious considerations is to

determine the maximum possible movement rate of troops and equipment into the

area� Only after this maximum movement rate is determined� can scheduling begin�

The following additional factors must then be considered


� The mission commander will set priorities on units and equipment� He will
also specify times at which units and equipment must arrive in the theater�
The deadlines serve as scheduling constraints� whereas the priorities will be
incorporated into the optimization function�

� Certain pieces of equipment can only be transported by the largest aircraft or
by ship� These additional constraints often result in higher transport time�

� An additional example of constraints is the need for a Marine unit to arrive on
foreign soil within �� hours of an identi�ed crisis� The footprint of a forward
deployed unit will be small� and their sustainment capability limited to ��
days� Deployment of this unit into the area of operations needs to be planned
for� furthermore� the e�ect of placing a unit into the area of crisis on the will
of the foreign force to wage war must be incorporated into the optimization
criteria�

� Unfortunately individual threats cannot be considered as local optimization
problems� We have a large number of air transport assets that are committed
globally� which means that 	��� of these assets can never be committed to a
single local contingency�

� Unfortunately� variables speci�c to location� such as air�eld capacity� may need
to be separately modeled throughout the world� Although movement of troops

�



and equipment by air from the US is very �exible� the movement of troops and
equipment into a foreign port or air�eld may not be�

� Time is another very important consideration� Time must be managed as
e�ectively and e�ciently as possible� and if possible� used to advantage� It
takes time to match a contingency plan to the actual scenario� to start the
plan� to actually follow the plan� and to revise and correct the plan� The
amount of time a commander thinks he has to build up his forces will help him
set his priorities for the arrival of equipment and units in theater�

Unfortunately� a single schedule will not su�ce� Many �what�if contingencies�

need to be calculated� situations can change quickly and schedules must change to

accommodate the dynamically changing environment� Being �exible and adaptable

are hallmarks of success in any military operation� Constant updates of the current

state of movement into the area are required to ensure that the schedule is still valid

and e�ective� Planes and ships and trucks break down� weather changes for the worse�

new regional contingencies pop up� and political pressures rise and fall� Schedules

must be recalculated to take into account both opportune advantages and unexpected

problems� It is the challenge of the scheduler to determine and properly analyze the

current state of deployments and movement� as well as the causes of any changes�

In summary� we cannot predict exactly how long any given transport operation will

require� but we can often match the transport operation mean time and variance to a

common probability distribution such as Gaussian or exponential�

The creation of a movement schedule in the above example will also be limited

by accurate state information� Acquiring total knowledge of an environment� and

a complete understanding the interoperability of the assets in that environment� is

a challenging problem� Scheduling decisions are� more often than not� made with

limited� and often only �best guess� information� This type of decision making will

only reach an optimal solution by accident� a scheduling tool that accounts for variance

in transport times would be very useful to commanders in charge of these operations�

This thesis will advance the state�of�the�art in heterogeneous schedulers that can� in

�



the future� not only be applicable to scheduling in computing environments� but also

to the problem of scheduling troop movement�

As we have hinted� our example above has direct correlation to a heterogeneous

computing environment� In a heterogeneous computing environment� machines of

di�erent architectures are often linked together via a network� The machines may

be located in the same room or on di�erent continents� or aboard sea�going vessels

or on satellites� The variety of architectures in the heterogeneous system provide

capabilities above and beyond what you would �nd in an environment consisting only

of machines with similar architecture� Below is an example that illustrates these

additional capabilities�

Consider the capabilities of the Single Instruction� Multiple Data �SIMD� ma�

chine�

SIMD machines �Single Instruction� Multiple Data� are an inexpensive
way to construct parallel computer systems� A typical SIMD architecture is
illustrated in Figure ��

A single front end controls the entire system� the front end fetches and
decodes instructions� It includes �typically� a scalar processor core �usually a
RISC machine�� plus additional instructions to control the parallel processor
ensemble� The front end usually has its own memory to hold the program and
scalar data�

The back end comprises many �up to thousands� processing elements
�PEs�� Each can perform arithmetic operations� memory fetches� and can send
and receive messages� The systems essentially replicate the data path of a
processor in each PE� but the control part of the processor resides only in the
front end� This makes SIMD machines economical to design and build�

When the front end issues a parallel instruction� it broadcasts the in�
struction to all PEs� which all execute the instruction in parallel� Thus� a single
instruction is performed on all data simultaneously� �Ref� �� pages ��������

The capability of a SIMD architecture is maximized� then� when used with

programs that require the same instruction or set of instructions be performed on

many di�erent �pieces� of data� For example� SIMD machines manipulate matrices

better than single processor machines�

�



Another machine that might be found in a heterogeneous system is a vector pro�

cessing machine such as a CRAY� CRAY computers set the standard for high perform�

ance vector super�computing� and are still utilized worldwide� when there is a need

for enormous computational capability� The Y�MP EL� a CRAY mini�supercomputer�

provides pipelining and segmentation� which are integral features of this architecture

that support parallel processing aboard a single chip� Vector processing is provided

to enable a programmer to sustain maximal I�O CPU throughput� Vector processing

increases computing speed because the execution of single instruction can allow an

operation to be performed sequentially on a set �or vector� of operands� �Ref� ��

This type of architecture is suitable for analyzing vectorized data� such as weather or

satellite information�

In order to maximize the use of a heterogeneous computing environment con�

sisting of diverse architectures such as the CRAY and SIMDmachines discussed above�

knowledge of both the machines in the environment and the programs to be run on

each machine are required� It may be a waste of compute power to run a job on a

machine that is not best suited for the job� Such run�times could be large enough to

retard productivity and e�ciency even on a lightly loaded system� The problem is

compounded on a heavily loaded system� Often� throughput maximization is a goal�

Throughput maximization in a heterogeneous environment might mean optimal use

of the resources� such that a minimal number of compute cycles are �wasted� doing

work better suited to the capabilities of other architectures or machines�

SmartNet is a scheduler that attempts to compute the best scheduling policy for

tasks in a shared� heterogeneous computing environment� Such a situation is analogous

to the previous troop and equipment movement example� The transport mechanisms

are comparable to various machines in a heterogeneous system� Jobs needing to be

run on a heterogeneous system are comparable to the units and equipment that need

to be moved� The commander needs as much information as possible in order to create

�CRAY machines are now manufactured by Silicon Graphics� Incorporated�

�



a near�optimal schedule�

SmartNet is also analogous to the military logistical planner� SmartNet is dis�

cussed in detail in Chapter II of this thesis� SmartNet is a scheduling framework for

heterogeneous computing environments� It manages both jobs and machine resources

in that environment� SmartNet manages these assets by creating a near�optimal sched�

ule of jobs to be run on machines located on the network� SmartNet takes many factors

into account� including the performance of jobs on the various architectures� the com�

pute characteristics of a job� current machine loads� and the state of the heterogeneous

system� �Ref� 	�

B� STATEMENT OF PROBLEM

Prior to our research� SmartNet had a rudimentary simulation mode that al�

lowed its scheduling policies to be assessed without tying up the network and wasting

valuable compute cycles on machines that may or may not be �owned� by the testing

facility� The SmartNet simulator built a schedule from a set of requested jobs and

a database containing information about jobs� machines� and job�machine pairs� In

simulator mode� SmartNet then performed a discrete event simulation of the execution

of the schedule� This previous SmartNet simulator uses the expected time to compute

�ETC� value� which is the average run�time of the previous run�times of the job on

the same machine� as the simulated run�time� The problem with using ETC values

for run�times is that hardly� if ever� will a job execute for exactly the amount of time

expected� The use of the ETC value for simulated run�time duration means that the

SmartNet simulator does not produce realistic simulation results�

C� GOAL

The goal of this thesis is to investigate the e�ects that di�erent run�time dis�

tributions have on the performance of SmartNet� We will enhance the SmartNet

simulator to provide� as the simulated run�time� a randomly generated run�time from

�



a reasonable run�time distribution for each job� This enhancement will enable us to in�

vestigate the e�ciency of schedules resulting from the di�erent scheduling algorithms

available in SmartNet under more realistic conditions� Simulations using our modi�

�ed simulator will contribute to an understanding of the value of SmartNet in less

controlled environments� such as in the DOD�s Joint Task Force Advanced Techno�

logy Demonstration �JTF�ATD� and Battle�eld Awareness and Data Dissemination

�BADD� programs� Additionally� although not part of this thesis work� such sched�

ulers will likely become useful to commanders in the logistical scenario described in

our above example�

D� THESIS ORGANIZATION

This thesis is organized as follows� Chapter II provides a detailed look at

SmartNet� Chapter III is concerned with discrete event simulation as it pertains to

SmartNet simulation mode� Chapter IV deals with the enhancements that we made

to the SmartNet simulator� Chapter V details the experiments performed with the en�

hanced simulator� as well as the results obtained from these experiments� Chapter VI

summarizes the conclusions drawn from these experiments and discusses further re�

lated research opportunities�






PE #17 PE #18 PE #19

PE #27 PE #28 PE #29

PE #37 PE #38 PE #39

BACK END

FRONT END

with memory
RISC chip

Figure �� Single Instruction� Multiple Data �SIMD� Machine Architecture� The front
end is a RISC chip with memory� used to control the back end� The back end is a
matrix arrangement of relatively cheap processors� Each processor performs the same
operation on di�erent data� as directed by the front end� In this �gure� only a small
portion of the back end is shown� Actual matrices of processors can be quite large�
up to ��� ��� 	�� processors or more�

	�



II� SMARTNET

A� INTRODUCTION

This chapter describes SmartNet in considerable detail� Section B provides

general information about SmartNet and why it was developed� Section C describes

how SmartNet operates� Section D contains information about the architecture of

SmartNet� Section E summarizes some previous results from the application of Smart�

Net to scheduling problems� Finally� Section F provides examples of the Opportunistic

Load Balancing� Limited Best Assignment� and other SmartNet scheduling algorithms�

B� BACKGROUND INFORMATION

SmartNet is a framework for scheduling resources in a heterogeneous comput�

ing environment �Ref� 	�� It has been in development for over 	� years at the Naval

Command� Control� and Ocean Surveillance Center �NCCOSC� Research� Develop�

ment� Test and Evaluation �RDTE� Division� San Diego� California� The principle

scientist is Richard Freund� however� the SmartNet Development Team consists of

government employees and contractors working in various locations across the United

States� The software currently contains over 	������ lines of code� developed with ��

sta��years of e�ort�

The computing world is full of heterogeneous computing environments� They

exist wherever machines with distinctly di�erent architectures are networked� The

machines may be connected for any number of reasons� but the environment that most

demands a product with SmartNet�s capabilities is an environment used to perform

input�output intensive �Ref� 
� and�or compute intensive jobs �Ref� 	��

Current and future high performance computing �HPC� applications need in�

creasing amounts of computing power� Because of this� there is an increasing focus

on maximizing the productivity and e�ciency of all available computing assets� In

most HPC centers� local and remotely available computers comprise a heterogeneous

		



network� By allowing all of these assets to be utilized by a maximum number of

applications� the connected assets in e�ect become a metacomputer� Figure � is a

pictorial description of this concept�

Figure �� The Metacomputer Concept� Many HPC sites are connected to form a
large� powerful� distributed virtual machine�

Ongoing e�orts within the research community include creating distributed

computing environments �DCEs� in order to further maximize the potential compute

power of these heterogeneous assets� Resource management systems �RMSs� have

been incorporated into existing computing environments with the goal of better man�

aging the set of resources� DCEs and RMSs have fostered improvements in HPC� but

still do not tackle the di�cult problem of scheduling jobs and machines intelligently�

SmartNet is capable of supplementing the e�orts of DCEs and RMSs to more

fully maximize the compute capability in a heterogeneous computing environment� Its

	�



focus is on optimizing a set of tasks instead of each task singly� �Ref� 	��

While SmartNet is not the only advanced scheduling system under develop�

ment� it does have features that distinguish it from other packages� Most scheduling

e�orts to date utilize Opportunistic Load Balancing �OLB� to develop scheduling solu�

tions� OLB is a method by which jobs are scheduled based upon the current loads on

the machines� If there is an open or unloaded machine� OLB schedules a job to run on

that machine� Put simply� it is a form of �queue management�� whereby the queues are

evenly loaded with no attention being paid to jobs already enqueued or the expected

run�time of the same job on di�erent machines �ETC�� Another scheduling technique�

which uses the ETC concept that was pioneered by SmartNet� is Limited Best As�

signment �LBA�� LBA considers one of the important parameters of scheduling� the

expected performance of each job on the various architectures in the heterogeneous

computing environment� LBA assigns each job to the machine upon which it is ex�

pected to execute the fastest �Ref� 	�� assuming �unrealistically� that no other job is

using that machine� Both OLB and LBA consider only half of the information that is

required for the creation of a near�optimal schedule�

SmartNet considers both job performance and machine loads in its schedule

creation� Armed with these two parameters� it develops a better schedule� Section F

of this chapter provides examples of how a better schedule is generated using this

information�

C� SMARTNET�S PURPOSE

�� Goal of SmartNet

SmartNet is a scheduling framework for distributed� heterogeneous� high per�

formance computing �HPC�� In this role� SmartNet strives to


� Maximize computing power�

� Increase the throughput of a set of jobs�

� Optimize cost�e�ectiveness�

	�



� Leverage existing resources� and

� Ensure robust scheduling�

In this context� the term �framework� means that SmartNet provides a mech�

anism that can enhance the performance of existing systems� such as DCEs or RMSs�

As a framework� SmartNet was also designed so that it can easily accommodate new

scheduling criteria and heuristics� This makes SmartNet a viable tool for a majority

of HPC sites� regardless of the type of task and resource management that is currently

utilized at that site� SmartNet can be applied to nearly any environment where the

dynamics of the scheduling problem require a near optimal solution�

�� Functionality

SmartNet is designed to allow a single administrator to manage the entire sys�

tem� Users submit tasks to SmartNet� As tasks are received by the SmartNet server�

they are placed into a database� a schedule is created or updated� and the tasks are

run when the schedule indicates they should be� The database is a simple plain text

�le with a particular �and strict� format that is cached in memory when SmartNet

is running� It is from this database that the server gets its job�machine estimated

run�time �ETC values� information and to which the server adds new experiential in�

formation� This database information is the source of information for the construction

of the schedule� Given the job�machine ETC values in the database� the scheduling

algorithms are applied to create a near�optimal schedule� The server initiates the

schedule and tracks the behavior of all jobs throughout the entire run�time process� If

a job runs longer than anticipated� it can be terminated or �agged� Such a �rogue job�

might cause an e�mail message to be generated from SmartNet to the original tasking

entity� letting that group or user know that something was wrong with their job� As

jobs complete� experiential data is collected and saved into a database� As experien�

tial data is gathered� �learning� occurs� and SmartNet changes compute characteristic

and expected time to complete �ETC� data in the database �Ref� ���

	�



D� SMARTNET ARCHITECTURE

�� SmartNet Processes

SmartNet is made up of several di�erent processes� each with its own mission�

yet relying upon messages to pass data between its processes� These processes include

the Scheduler� the SmartNet Database� the Learning and Accounting Process� and the

Controller� Messages exchanged consist of Requests� Control Information� and Data�

Figure � depicts the relationships of these pieces�

Execution &

Administration

Interface

ControllerDatabase

Scheduler

Resources

Clients

RMSs

Learning &
Accounting

SmartNet

Figure �� SmartNet Architecture� from �Ref� ���

a� Interfaces

There are two user interfaces� one for the user who is submitting a job

to be run and one for the SmartNet system administrator who oversees the proper

operation of SmartNet� Graphical and command line versions exist for each� Users

	�



can set priorities for their jobs� but the system administrator has ultimate control �Ref�

	��

b� The Controller

The actual execution of jobs on resources may be controlled by any one

of several facilities� including Resource Management Systems �RMSs�� other versions

of SmartNet� or Distributed Computing Environments �DCEs� �Ref� ���

c� The Scheduler

The SmartNet Scheduler contains both optimization and scheduling al�

gorithms� There is a need for multiple algorithms because no polynomial algorithm

optimally schedules for all environments� New schedulers can be added by the Smart�

Net system administrator to take advantage of changing or unanticipated environ�

ments� Optimization is key to the performance of SmartNet� SmartNet can imple�

ment any number of optimization criteria� although only heuristics for maximizing the

throughput by minimizing the completion time of the last job that �nishes are present�

Optimization criteria are what direct SmartNet to utilize speci�c search and schedul�

ing algorithms� The algorithms built into the SmartNet scheduler are discussed in

Section � �Ref� ���

d� The Database

The SmartNet database is an ASCII text �le containing information

about sites� groups� machines� models �jobs�� and model�machine pairs� The database

can be built or edited by hand� but the SmartNet Editor is a good tool to use� as it

forces the administrator to input required data and writes the database in the proper

format� SmartNet is not forgiving of improper formatting� As the database is parsed�

data is evaluated and placed into objects commensurate with the order of data in

the �le �Ref� 	��� Appendix A shows the �elds of the database and the information

contained therein� Of particular importance is the expected time for completion �ETC�

�eld in the model�machine listings� This ETC data is what SmartNet uses to create

a schedule� The �nish times of jobs must be either estimated by the programmer or

	�



collected by SmartNet over the course of several runs in order for SmartNet to create

anything close to a near�optimal schedule� Chapter IV contains detailed information

about the changes that we made to this database� and to routines that read and write

to the database� in order to perform our experiments�

e� The Learning and Accounting Process

Presently� SmartNet�s algorithms for learning and accounting are rudi�

mentary� The framework exists� though� to permit easy integration of additional

algorithms� As we mentioned in Section �� rogue processes are tracked and reported�

The action taken upon discovering a rogue process is speci�ed by the user or system

administrator at startup� Another form of learning and accounting that occurs is the

gathering of experiential data after job completion� SmartNet will collect run�time

statistics and write them out to the database �le� making use of the information later

during the scheduling and execution of similar jobs� �Ref� 	�

f� The Controller

The Controller enters the picture when jobs terminate� jobs become

rogue processes� new job requests are input� and when machines or networks go down�

All of the above events may cause SmartNet to create a new schedule or re�start certain

uncompleted jobs� The controller is designed to allow SmartNet to


� allow redundancy in critical environments�

� operate in environments where resource availability is not guaranteed�

� be integrated with an RMS and provide scheduling assistance to that RMS�
and

� coordinate the e�orts of multiple RMSs �Ref� 	��

�� SmartNet Algorithms

SmartNet uses a number of algorithms to create a schedule� The general char�

acteristics of these algorithms are discussed below�

	�



a� Exhaustive Algorithm

An Exhaustive Algorithm provides a �brute force� solution to the schedul�

ing problem� Every possible data combination is generated and compared� Because

this scheduling problem is NP�complete� this algorithm� that produces an optimal

result� can only be used with very small data sets �Ref� ���

b� Greedy Algorithms

Greedy Algorithms make the best local choice available at a speci�c

point in the search tree �Ref� �� pages ��
������ For instance� if a Greedy algorithm

is to choose the cheapest candy� and is searching a row of candy including a �� cent

Milky Way� a �� cent Almond Joy� and a �� cent package of Trident� it will choose

the Trident over the other two� This appears to be an optimal solution� however� it is

an optimal choice� based upon the candy considered at that point in the search tree�

It is a best local choice� If a twenty cent box of Tic�Tacs lies on another row� it is

the cheapest candy� and so the true optimal choice� Whether or not this decision aids

in the production of an optimal solution depends upon the parameters of the entire

problem� Since the Greedy Algorithms look for the best choice at some point in the

search tree� complete consideration of the e�ects of the choice upon the end result

are not made� Greedy algorithms are deterministic and produce only near�optimal

results� SmartNet uses both an O�mn� algorithm� which we call Fast Greedy� and an

O�mn�� Greedy algorithm�

c� Evolutionary

Hartmut Pohlheim presents a �ne explanation of evolutionary algorithms�

portions of which are included here�

Evolutionary algorithms are stochastic search methods that mimic the
metaphor of natural biological evolution� Evolutionary algorithms operate on a
population of potential solutions applying the principle of survival of the �ttest
to produce better and better approximations to a solution� At each generation�
a new set of approximations is created by the process of selecting individuals
according to their level of �tness in the problem domain and breeding them
together using operators borrowed from natural genetics� This process leads

	�



to the evolution of populations of individuals that are better suited to their
environment than the individuals that they were created from� just as in natural
adaptation�

�I�t can be seen that evolutionary algorithms di�er substantially from
more traditional search and optimization methods� The most signi�cant dif�
ferences are


� Evolutionary algorithms search a population of points in parallel� not a
single point�

� Evolutionary algorithms do not require derivative information or other aux�
iliary knowledge� only the objective function and corresponding �tness
levels in�uence the directions of search�

� Evolutionary algorithms use probabilistic transition rules� not deterministic
ones�

� Evolutionary algorithms are generally more straightforward to apply�
� Evolutionary algorithms can provide a number of potential solutions to a
given problem� The �nal choice is left to the user� �Thus� in cases where
the particular problem does not have one individual solution� for example a
family of pareto�optimal solutions� as in the case of multi�objective optim�
ization and scheduling problems� then the evolutionary algorithm is poten�
tially useful for identifying these alternative solutions simultaneously�� �Ref�
		�

d� Simulated Annealing

Simulated annealing is a stochastic optimization method useful for �nd�

ing global minimum cost con�gurations of NP�complete combinatorial problems with

cost functions having many local minima �Ref� 	���

Simulated annealing builds on an analogy between the way metals con�

tract with decreasing temperature into a minimum energy crystalline structure and

the way searches for a minimum can be performed� After metal is heated and manip�

ulated� it must be cooled� The best way to cool metals is to do it slowly� This allows

the molecular makeup of the metal to slowly contract and �settle� upon itself which

reduces the probability of cracks� �bubbles�� and otherwise weak bonds throughout

the entire mass of the metal structure� If metal is heated and then cooled very quickly�

the contraction of the molecular structure tends to settle into local minima rather than

to contract into a more stable� true minima� The metallurgic process of annealing then

	




compares to stochastic optimization methods like this
 The heated metal is the ran�

dom state that needs to be reduced to some sort of minima� In SmartNet� this would

be the minimum time for completion of all jobs being scheduled� The temperature is

a parameter that governs the probability of increasing the cost function at any step in

the search for the global minima �Ref� 	���

The simulated annealing algorithm requires a valid solution space� a way

to randomly move about in the solution space� a method for evaluating cost functions�

and an annealing schedule� The annealing schedule includes the initial �temperature�

variant and rules for decreasing that temperature throughout the search process� �Ref�

	��

Simulated annealing has several advantages� Speci�cally� simulated an�

nealing


� can deal with arbitrary systems and cost functions�
� statistically guarantees �nding a near�optimal solution�
� is relatively easy to code� even for complex problems� and
� generally produces �good� solutions�

This makes simulated annealing an attractive� but computationally expensive� option

for optimization problems where heuristic �specialized or problem speci�c� methods

are not available� �Ref� 	��

e� Future E�orts

As SmartNet is still a work in progress� there are continual e�orts to

develop better performing algorithms�

E� SMARTNET PERFORMANCE

Previous work with SmartNet� detailed in �Ref� 	�� provides the following

information concerning schedules generated by SmartNet�

The performance data shown in Tables I and II was developed from several

scheduling problems run on SmartNet in simulation mode� The scheduling problems

��



varied in both the number of jobs being scheduled and the number of machines avail�

able� as well as the amount of heterogeneity� The number of jobs and machines varied

for each problem� but was always somewhere between two and 	��� jobs and two and

��� machines� The two modes of heterogeneity used were


� Consistent Architectures� Given a set of machines� if one job runs faster on a
particular machine� then all jobs will run faster on that particular machine�

� Mixed Architectures� Given a set of machines� one job running faster on
a particular machine has no bearing on how other jobs might run on that
particular machine� No generalizations about the performance of all the jobs
on these machines can be deduced�

The algorithms were judged on how well they minimized the last job�s completion

time� Knowing that �nding an optimal schedule is an NP�complete problem �Ref� 	��

the baseline used for comparison was derived from a lower�bound algorithm� This

algorithm does not produce a valid schedule� but does obtain a time known to be less

than the time at which the last job will complete�

Table I provides average time of completion of the last job in a schedule for a

variety of architectures and algorithms� The numbers represent time� and show that

the schedule produced with a SmartNet Greedy algorithm �MinMin� is better than

either the OLB or LBA generated schedules�

Scalable arch� Arch� Mix Arch� Mix
jobs�machines ������� ������� ��������

LBA ��� ���� �����
OLB ���	 ���� 	�



MinMin �SmartNet� 
�	� 
��� ����

Table I� SmartNet Performance
 Average values for the time t at which the last job
in a schedule completes�

Table II shows OLB� LBA� and SmartNet�s Greedy algorithms� performance

relative to a lower bound� After normalizing to the lower bound� the table shows

�	



that given a ����	�� job�machine ratio on mixed architectures� the SmartNet Greedy

algorithms completes six percent slower than the best possible time� OLB completes

��� slower than this time� LBA� on the other hand� completes ������ slower than

this time�

Scalable arch� Arch� Mix Arch� Mix
jobs�machines ������� ������� ��������

LBA ���� �	�� �����
OLB ���� ���� ���


MinMin �SmartNet� ���
 ���� ���


Table II� SmartNet Performance
 Average values of t compared to our lower bound�
t is the time at which the last job in a schedule completes� Our lower bound is
represented as 	���� This table shows that when SmartNet schedules ��� jobs on 	��
mixed�architecture machines� the schedule is completed in six percent more time than
our lower bound� From �Ref� 	��

F� EXAMPLES

These examples help explain both how SmartNet works and how a knowledge

of both machine load and anticipated job performance can create a better schedule�

We consider the following scenario
 There are three machines� Machine�A�

Machine�B� and Machine�C� Each machine is of a di�erent architectural design

�SIMD� MIMD� and Vector� respectively�� There are four jobs� Job�� Job�� Job��

and Job�� each with di�erent compute characteristics� Table III provides ETC values

for the job�machine pairs�

�� Example �� Opportunistic Load Balancing

OLB is a method by which jobs are scheduled based upon the current loads on

the machines� Figure � shows one possibility of how an OLB scheduler might schedule

jobs to run on several machines� In this scenario� the OLB algorithm places the next

job in the queue of the next available machine� If the jobs are ordered in the queue

according to increasing job ID order� and if machines become available in the order

��



Machine�A Machine�B Machine�C

SIMD MIMD Vector

Job� �� � ��

Job� � �� �	

Job� �� �� �


Job� �� � �

Table III� Job Run�times used in all examples�

Machine�A� Machine�C� Machine�B� and Machine�B� the jobs will be scheduled as in

Figure �� We note that the time of completion for all jobs is ���

Machine A

Machine B

Machine C

Job 1 [33]

Job 2 [56]

Job 3 [12] Job 4 [3]

56

33

15

Figure �� Example 	
 An OLB Schedule�

�� Example �� Limited Best Assignment

LBA schedulers assign jobs to machines based upon the expected job�s per�

formance on each of the machines� In other words� the jobs are assigned to the

machines upon which they should perform the best �i�e�� have the shortest expected

run�time� �Ref� 	�� We note that this algorithm assumes that each job that it schedules

is the only job in the system� Again� Table III provides the expected run�time data

used in this example�

��



Machine A

Machine B

Machine C

Job 2 [2]

Job 1 [5] Job 3 [12] Job 4 [3]

2

20

Figure �� Example �
 An LBA Schedule�

Figure � shows how an LBA scheduler would schedule the four jobs on the

three machines� We note here that the expected time of completion for all jobs is ���

�� Example �� Greedy Algorithm

This example uses a Greedy Algorithm� This algorithm takes into account

both machine loads �like OLB� and run�time performance �like LBA� to produce a

near optimal schedule� Again� Table III provides the expected run�time data used in

this example�

Figure � provides a SmartNet schedule for the Table III data� Here� the earliest

expected run�time completion for all jobs is ��� This is signi�cantly better than either

the OLB or LBA schedulers from Examples 	 and ��

��



Job 2 [2]

Job 1 [5]

Job 4 [9] 9

5

15

Machine C

Machine B

Machine A Job 3 [13]

Figure �� Example �
 A SmartNet Schedule�

��



��



III� DISCRETE EVENT SIMULATION

A� INTRODUCTION

This chapter explains discrete event simulation� Section B provides background

information concerning simulation in general and explains why discrete event simula�

tion is a useful tool� Section C describes discrete event simulation in detail� Random

variates are explained in Section D� Section E presents concluding remarks�

B� BACKGROUND INFORMATION

The desire to predict the performance of a system has led to the need to study

both the system�s performance and behavior� This desire is the driving force behind

much academic and industrial research� In this context� a system might be


� an actual mechanical entity� such as an automobile or a building�
� some measurable non�mechanical entity� such as a hurricane or an ecosystem�
or

� a process or sequence of events involving both human and mechanical functions
similar to the logistic example posed in Chapter I�

One characteristic common to the types of systems listed above is that they

possess measurable parameters that in�uence their behaviors� For example� an auto�

mobile has the variable parameters velocity and acceleration� as well as the constant

parameters weight� mass� and coe�cient of friction� Performance of an automobile

is a�ected by all of the above parameters� Parameters may be restricted to a des�

ignated range� A study of an automobile�s performance would utilize these variable

and constant parameters� as well as any restrictions in e�ect� and provide perform�

ance predictions speci�c to the input parameters� Such a study would be helpful in

determining how an automobile might perform� given modi�cations to its weight or

coe�cient of friction� There are several methods available to study this or any system�

While� in this case� the most obvious would be to study an actual automobile� there

��



are severe limitations to this method� It would be di�cult� if not impossible� to make

adjustments to the coe�cient of friction without altering the shape of the automobile�

Changing the shape of an automobile is di�cult� The need to change the coe�cient

of friction� for example� limits the utility of experimenting on the automobile itself�

In this case� and for many other types of systems� it is probably easier to construct a

model� Figure � shows the di�erent ways systems can be studied�

Simulation
solution

Analytical

model
Physical

model
Mathematical

of the system
with a model
Experiment

actual system
with the

Experiment

System

Figure �� Ways to study a system� from �Ref� 	�� page ���

A model of a system can be constructed either mathematically or physically�

Depending upon the complexity of the system� both can be di�cult� There are obvious

limitations and di�culties associated with constructing a physical model of a logistic

system used to move troops and equipment from the United States to a foreign area

��



of operations�� Physical modeling would involve scaling a global problem down to a

manageable size� In a high �delity physical model� every physical feature of the logistic

operation might be physically rendered� Physical features requiring duplication in this

case would include the loading of ships and aircraft� troop movements� and air�eld

operations� The di�culty in making such a model accurate is obvious� Physical

modeling to a reduced scale also introduces inaccuracy in many areas� not the least

of which is the non�linearity of design characteristics between full and reduced size

entities�

An alternate approach to physical modeling is mathematical modeling� Any

physical system can be reduced to a mathematical model that represents those aspects

of the system that the modeler desires to measure and control� In our logistic example�

the loading of aircraft can be mathematicallymodeled as taking a deterministic amount

of time dependent only on the type of cargo being loaded� Transit time can be modeled

also as a deterministic amount of time� perhaps by using the average of historical data�

Actual cargo can be modeled using its weight� mass� and measurement parameters and

considered a �puzzle piece� to be moved� shifted� and transported in accordance with

the priorities provided by the force commander� In general� a mathematical model

is an order of magnitude less expensive model to produce than the physical model�

Additionally� the designer can easily modify the �delity of the various aspects of the

system that are deemed important�

There are two methods for studying mathematical models
 analysis and simula�

tion� The analytical approach to studying a model requires the solution of mathemat�

ical equations� If the system being modeled is complex� though� it may be impossible

to develop mathematical equations that consider the combined e�ects of every in�

terrelated or critical piece of the model� Increasing the accuracy� or �delity� of the

model may require very complex mathematical equations� As an example� we consider

modeling� in great detail� the logistic example from Chapter I�

�See example provided in Chapter I�

�




To model a single fork lift� we would need to mathematically represent such

things as the mean time between failure of the engine� the fork lift mechanism� and

the tires� Also� rate of failure of the operator� driving speed� lifting speed� haul rates�

machine�to�task suitability� fuel consumption rate� and maintenance schedules would

need to be modeled� As we see� there are numerous details in modeling a single fork

lift� and the fork lift itself is only a single� small part� of the entire logistic system�

There may be four di�erent types of fork lifts at a single airport� and a total of forty

fork lifts� altogether� The complexity of modeling forty fork lifts is greater than one

fork lift� but even if modeling them is easy� forty fork lifts as a whole are still a small

but vital piece of the logistic system� Further� more complex pieces of the logistic

system would need to be included in the model�

� Fuel� There are some �nite number of refueling trucks� as well as a �nite
amount of jet fuel� The delivery of fuel to the air�eld� the process of refueling
aircraft� and the performance characteristics of the personnel and machines
involved in the entire refueling process would need to be modeled�

� Scheduling� Scheduling is an NP�complete problem� The air�eld has a max�
imum physical capacity� The air�eld also has a maximum workload under
which it can operate� Every asset at the air�eld needs to be scheduled so that
the process of getting personnel and equipment onto aircraft and subsequently
overseas works in accordance with the intent of the commander� Introducing
scheduling into an analytical model may make it too complex to �nd a closed
form solution�

� The Human Factor� In every environment where people are working under
stressful conditions� accidents occur� When medium and large scale machinery
are present� severe accidents are possible� Accident and injury rates must
be modeled� Further� the consequences of these same accidents and injuries
must also be modeled� For example� we consider the e�ect that the following
scenario might have on the operation of an air�eld
 A Heavy fork lift operator
is loading an extremely large metal storage container on a C�� cargo plane�
The C�� is also being refueled� The fork lift operator has a heart attack and
loses control of the fork lift� The fork lift drives the storage container through
the side of the C��� wrecking the jet�s extensive hydraulic system� The refueler
operator� seeing the situation� performs an emergency disengage of the refueler
from the aircraft� His refueler dumps ��� pounds of highly �ammable jet fuel
on the tarmac� We see that such scenarios� when modeled with great �delity�

��



are mathematically very complex� The individual e�ects may be easy to model�
however� the comprehensive e�ect of the individual events may not be easy to
model�

If� when using the analytical approach� very realistic assumptions and high

�delity are required� closed form solutions may be impossible� forcing the mathematical

modeler to make simplifying assumptions that can cause the results to be useless�

Suppose that the probability of a devastating accident involving a C�� aircraft on an the

ground during refueling is �����	� Further� it is known that the probability distribution

is Gamma������	� 	��� If an accident of this type occurs� the air�elds cycle rate of

aircraft is decreased by 	��� The Gamma distribution does not have a closed form

with these parameters� The mathematical modeler might choose to represent the

probability of this event occurring� then� with an exponential distribution� because it

has similar characteristics to the gamma distribution� and the exponential distribution

and its inverse are both closed form expressions� Because of the need to simplify the

mathematical model� the model no longer provides the desired accuracy� which may

result in incorrect performance estimates�

An important part of modeling is simpli�cation� Simpli�cation is a method of

reducing or removing speci�c complex factors which can be accounted for by other

means� Using the fork lift example above� if� in reality� the fork lift breaks once every

	����� hours� the modeler may be able to assume that the fork lift will not break�

Ample consideration must be given to the possibility of skewing the results obtained

from the model because of poor simplifying assumptions� If the fork lift actually

breaks once every 	� hours� that factor would probably need to be included due to

the frequency of occurrence�

A simulation� executed on a computer� also uses a mathematical model� When

building simulations� it is easy to increase the �delity of certain aspects of the system

while decreasing the �delity of others� We again consider the fork lift discussed above�

A simulation model of a fork lift may not need to model �ne details such as the mean

time between failures� fuel consumption� lifting speed� and maintenance schedules� It

�	



may make sense to consider all of these factors as one and model the work performed

per hour� Such a simpli�cation would reduce the complexity of the model� and might

make it easier to evaluate� Simulation models are evaluated via their state variables�

State variables are those parameters that are required to describe the model �and so�

the system� at a particular point in time�

Simulation models can be classi�ed along three dimensions


� Static versus Dynamic� A static model is a snapshot of a system at a particular
time� while a dynamic model is evolutionary�

� Deterministic versus Stochastic� A deterministic model has no random com�
ponents� Output is a deterministic function of input� A stochastic model is� in
contrast� non�deterministic�

� Continuous versus Discrete Time� A continuous timemodel is one in which the
state variables change continuously over time� A discrete time model is one for
which the state variables change instantaneously at separate �discrete� points
in time�

� Continuous versus Discrete States� A continuous state model is one in which
the values of the state variables can take on any of a de�ned range of values�
A discrete state model is one in which the values of the state variables are
restricted to a subset of acceptable values�

The type of simulation used to provide results in this thesis is static� stochastic�

and discrete in nature� This type of simulation is commonly called discrete event

simulation�

C� DISCRETE EVENT SIMULATION

�� Overview

Discrete event simulation models a system�s activity as it progresses through

time� The operation of a system can be thought of as a collection of events that make

up the system�s activity� An event is �any instantaneous occurrence that may change

the state of the system�� �Ref� 	�� page �� Events occur at di�erent times� and are

stamped with the time at which they occur� The state of the system is� informally�

��



its current condition� System state is de�ned by system speci�c state variables that

describe the system�s condition �Ref� 	�� page �	�� As events that are to occur in the

future are generated as a byproduct of simulating a current event� they are stored in

an event queue� where they stay until the simulation clock advances to the time of their

occurrence� Events in event queues are often ordered according to the simulation time

at which they are to occur� As the discrete event simulation progresses� individual

events are taken out of the event queue and processed� When an event is removed

from the event queue for processing� the simulation clock is advanced to the time

stamp on that event�

Discrete event simulation characteristically requires three sets of variables�

� Time variable t� t is used to track elapsed simulation time and is also called
the simulation clock�

� Counter variables� These are used to track repetitions of certain events and
the time that they occur�

� System state variables� These are model�system dependent� they describe the
state of the system at any given time �Ref� 	�� page �	��

The advancement of time in discrete event simulation can be a di�cult concept

to understand� The elapsed simulation time and the actual time required to run a

simulation are usually di�erent� The time required to run a simulation may be greater

or less than the elapsed simulation time� and is dependent upon the particular model�

An example of a model where simulation time would probably be greater than real

time is in the simulation of subatomic particle movement� An example of a simulation

that would probably require less time than real time is simulation of continental drift�

Advancement of the simulation clock is usually done via one of two methods


� Next�Event time advance� Time is advanced whenever an event occurs�
� Fixed�Increment time advance� Time is advanced at �xed intervals�

Next�Event time advance is the most prevalent method �Ref� 	�� pages ��
��

Figure 
 depicts the �ow of control for a next�time advance discrete model�

��



Start

Stop

simulation

Initialization Routine

1.  Sim Clock = 0

2.  Init System State

     statistical counters

3.  Init Event List

0.  Invoke initialization routine

1.  Invoke timing routine

2.  Invoke event routine
Repeatedly

Library Routines

Report Generator

     clock

1.  Update system state

2.  Update statistical counters

3.  Generate future events, add to event list

Generate

Random Variates

1.  Compute estimates of interest

2.  Write report

No

Yes

0
1.  Determine the next

2.  Advance the simulation 

Timing Routine

over?

Is

Event Routine i

1

i

     event type, say i

Figure 
� Flow of control in Discrete Event Simulation� from �Ref� 	�� page 	���

�� An Example of Discrete Event Simulation

Discrete event simulation can be applied to the logistic system described in

Chapter I� The mission to be accomplished� using the logistic system� is the e�cient

movement of troops and supplies from various locations throughout the United States

and other allied nations to some foreign area of operation� This system provides

numerous examples of the di�culties found when building a near optimal schedule

for the use of logistic assets� It is also a good system to demonstrate the utility and

suitability of discrete event simulation� Of particular note� however� is the di�culty

of modeling any system this complex and large� Akin to this di�culty is the need for

speci�c problem statements� In other words� we need to know what we are modeling

and why� It is often infeasible to model every aspect of such a system with great

��



�delity� as the size of the system� including dependencies between subsystems� would

be too complex�

Eastern Africa Area of Operation

Air Transport Flow Into and Out Of
The Area of Operation

Figure 	�� Logistic Example
 Air transport assets into and out of Somalia�

An important factor in the success of a logistic system is the capability� per�

formance� and scheduling of air transport assets� Whenever U�S� forces deploy to

foreign soil for both peace keeping and combat missions� multiple plans for troop and

equipment build�up in that area are developed� The plans include rosters of units

�troops and equipment� that will be deployed and schedules designating when the

units are to arrive� The deployment of forces can take from several days to several

months in order to reach the force structure needed to ful�ll the requirements of the

mission� The theater commander will be very concerned about reaching his desired

in�theater force structure� as it will drive his ability to begin� continue� and complete

��



the mission� The logisticians must plan the movement of assets into the area of opera�

tions as e�ciently and e�ectively as possible to allow the theater commander to mass

his forces appropriately� Transportation of equipment and troops by air can help meet

initial force build�up requirements both e�ciently and quickly�

The commander�s desires speci�c to air transport scheduling and availability

can be simulated using discrete event simulation� Two important questions that the

simulation must answer for the commander are �How long will it take for my

forces and their equipment to be transported into the area of operations��

and �Given the planned scenarios� which one most rapidly places the major�

ity of my �ghting forces and their equipment on the ground�� One approach

to answering the commander�s questions is to build a computer model and simulate

the movement of each force structure into the area of operation� and report the length

of time required� The goal is to use the simulation as one of the many tools available

to the commander�

Discrete event simulation has direct application to modeling the �ow of aircraft

into an area of operations� We consider the following pseudo�algorithm


� loop begins

	� Aircraft�aa� arrives at fromUSAirfield�bb�

�� Aircraft�aa� is ready to be unloaded

�� Aircraft�aa� is ready to be loaded

�� Aircraft�aa� is loaded

�� Aircraft�aa� departs airfield�bb� for AREA OF OPERATIONS

�� Aircraft�aa� arrives at AREA OF OPERATIONS

�� Aircraft�aa� is ready to be unloaded

�� Aircraft�aa� is ready to be loaded


� Aircraft�aa� is loaded

	�� Aircraft�aa� departs AREA OF OPERATIONS for toUSAirfield�cc�

� loop ends

��



The above list enumerates several events that a discrete simulation of the sys�

tem might incorporate� The dynamics of this problem dictate that the above ten

events must occur at some point� and in the stated order� during every round trip

�ight of an aircraft �Aircraft�aa�� from the United States �fromUSAirfield�bb��

to a foreign air�eld �AREA OF OPERATIONS� and back to the United States

�toUSAirfield�cc���

The �discrete event� aspect of the simulation refers to the time interval between

speci�c events� The amount of time advanced is dependent upon what is going on in

between the two events� While a detailed discussion of a discrete event simulation for

the above example is beyond the intent of this section� an explanation of what occurs

between two of the events will su�ce� We consider the events in lines 	 and � above


	� Aircraft�aa� arrives at fromUSAirfield�bb�

�� Aircraft�aa� is ready to be unloaded

Event 	 is labeled with the time �Simulated time 	� that an aircraft arrives at a U�S�

air�eld� Event � is labeled with the time �Simulated time �� that the same aircraft

is ready to be unloaded� The duration between event 	 and event �� in reality� is

determined by the amount of time the aircraft is idle on the ground� which is e�ected

by the number of other aircraft already on the ground as well as the rate at which

those aircraft can be unloaded� The duration between events 	 and � in the simulation

is either deterministic or stochastic� DeltaT represents the time required to unload

the aircraft� The advanced time function might proceed as follows�

	� SIMULATION CLOCK � Simulated time 	

�� Simulated time � � Simulated time 	  DeltaT

�� SIMULATION CLOCK � Simulated time �

In our example� DeltaT is determined by a distribution that is based upon observed

data� If an aircraft must always wait the same amount of time before being unloaded

��



after it arrives at the air�eld� a constant could be used for DeltaT � If the amount

of time that an aircraft must wait to be unloaded after it lands at the air�eld is not

�xed� the probabilistic nature of that duration must be recreated for the simulation�

Recreation of this random process requires the following


� The identi�cation of the mathematical distribution that matches the distribu�
tion of times that the aircraft must wait to be unloaded�

� The generation of a random variate�� DeltaT � from the mathematical distribu�
tion previously identi�ed�

The strength of discrete event simulation is evident when the simulation is

actually performed� Actually loading and unloading the aircraft may require several

days� However� because discrete event simulation instantaneously advances simulated

time to the time of the next event� the simulation may only require several seconds�

The SIMULATION CLOCK is advanced at each event by the appropriate real

world DeltaT � and the simulation terminates with realistic results in signi�cantly less

time than the actual sequence of events�

D� RANDOM VARIATES

The very nature of discrete event simulation requires it to incorporate stochastic

processes to account for the inherent randomness in the system� We again consider the

logistic example used throughout this chapter� While the process of moving troops�

supplies� and equipment from the United States to a foreign shore is a highly sched�

uled� well planned operation� there is unavoidable randomness in the system� As an

example� we consider the e�ect of mechanical failure on air transport �ow� Data� such

as the time between failures� can be gathered for the relevant aircraft� This data can

then be analyzed statistically to determine the mean and variance� and a distribution

�tted to the failure rates� Using this information� the failure can be simulated so

�Random variates are explained in Section D�

��



as to occur randomly according to a distribution that has been �t to the observed

data� The simulation� then� is capable of demonstrating the e�ect of a decrease in the

movement rate of aircraft into the area of operations� Further simulation work may

include modeling how the logistician or commander adapts to the lost air transport

movement capability and implements an updated �ow plan�

�� Random Versus Pseudo�random Numbers

Knuth provides a good de�nition of the term random�

�The idea of randomness often invokes� philosophical discussions about what
the word �random� means� In a sense� there is no such thing as a random
number� for example� is � a random number! Rather� we speak of a sequence
of random numbers with a speci�ed distribution� and this means loosely that
each number was obtained merely by chance� having nothing to do with other
numbers of the sequence� and that each number has a speci�ed probability of
falling in any given range of numbers� �Ref� 	�� page ��

After computers were introduced� people began looking for e�cient ways to

obtain random numbers using computer programs� Several methods were investigated�

but none proved e�cient nor simple enough to gain acceptance� These problems led

to an interest in the production of random numbers using the arithmetic operations

of computers� John von Neumann suggested the �middle�square� method in 	
���

The idea is to take a number chosen at random� square that number� then extract the

middle digits to produce the next random number� The problem with this method is

that there really is not any randomness in the process� Each number is completely

determined by the one before it� However� the sequence of numbers appears to be

random� The generation of sequences of random numbers deterministically is usually

called pseudo�random number generation� Within most textbooks� as well as in this

thesis� sequences are termed random� with the understanding that sequences only

appear to be random� �Ref� 	�� page ��

If a random sequence of numbers is generated deterministically� that sequence

can then be reproduced� Is this ability to reproduce a sequence of numbers from

�




a random number generator really undesirable� though! In many cases� it is� in

fact� desirable� There are many occasions where the precise behavior of a simulated

stochastic process might need to be reproduced multiple times� The only way to do

this is to reproduce the sequence of random numbers used previously� This technique

is particularly useful during debugging� when the performance of the simulator may

need to be consistent in order to rule out anomalous factors� �Ref� 	�� page ����

�� Random Variates and Distribution Characteristics

A random variate is a random observation generated from a probability distri�

bution �Ref� 	�� pages 		� ����� A probability distribution has speci�c characteristics

that are referred to as the �rst� second� and third moment� Table IV shows the para�

meters that characterize several well known types of distributions�

Distribution Parameter � Parameter � Parameter 


Gaussian Mean Variance NA
Exponential Mean NA NA
Uniform Smallest Limit Largest Limit NA

WeibullGamma Shape Parameter Scale Parameter NA
Lognormal Scale Parameter Shape Parameter� NA

Table IV� Parameters of Various Distribution Functions�

We will use the Gaussian �Normal� distribution as an example in this section�

Figure 		 shows a histogram of a Gaussian distribution of 	������ random variates

distributed around a mean of 	�� with standard deviation 	�� Random variates can

be thought of as the x�axis values� The frequency of x�axis values is plotted along the

y�axis� The Gaussian curve shows us that there are more random variates near the

mean� and fewer as you move away from the mean� An explanation of how random

variates can be generated from this information can be found in Section ��

��



0

2000

4000

6000

8000

10000

12000

14000

20 40 60 80 100 120 140 160 180

F
re

qu
en

cy

Random Variates

Gaussian, mean 100, stnd dev 15

Most random variates occur near the mean

Fewer random variates occur near upper and lower limits

"histo-normal"

Figure 		� An Example of a Gaussian Distribution� mean of 	��� standard deviation
of 	��

�� Generating Random Variates

First� we present a short summary of what we have discussed thus far� A

stochastic process is a process that contains some probabilistic components� In order

to accurately simulate a stochastic process� those aspects of the process that occur

randomly must retain their random nature in the simulation� In order to simulate a

stochastic process� then� speci�c information about the nature of the random factors

must be known�

For example� we again consider the fork lift� We assume that the rate at which

the wrong cargo �in error� is loaded on an aircraft is a random parameter that must

be considered in a simulation of the fork lift� Experimental data may show that the

mean time between a loading error per fork lift is 	�� hours� where the data from

�	



which this information was gathered behaves as a Gaussian �Normal� distribution

with mean 	�� and standard deviation 	�� This example was used to produce Figure

		� Given this information� the simulation of the fork lift can incorporate a random

error corresponding to this known behavior� Instead of a constant value of 	�� hours

for the mean time between a loading error� a factor can be added to the simulation

that causes the fork lift to load the wrong cargo randomly� but at time di�erences

generated from a Gaussian distribution of mean 	�� and standard deviation 	��

The mechanics of generating random variates are speci�c to the distribution in

question� however� every method relies upon a source of independent and identically

distributed �IID� random variates uniformly distributed on the interval ��� 	� �Ref� 	��

pages ��������� These are commonly called IID U���	� random variates� The most

important aspect of generating random variates� then� is a valid source of IID U���	�

random variates� While there are numerous random number generators available for

particular languages and operating systems� the user must ensure that the random

number generator they choose to use is in fact IID U���	��

There are several general classes of approaches for generating random variates

from an IID U��� 	� generator�

� Inverse Transform� This method is best used for generating random variates
with a distribution function F that is continuous and increasing when � �

F �x� � 	� The technique is to generate U � U��� 	� and return random
variate X � F���U�� �Ref� 	�� pages ��������

� Composition� This technique applies when the distribution function can be
best expressed as a combination of other distribution functions� When the dis�
tribution function F can be expressed as a convex combination of distribution
functions F�� F�� � � � � Fn� it may be easier to gather sample random variates
from the F �

is than from the original F � �Ref� 	�� pages ��������

� Convolution� The term convolution �comes from the terminology in stochastic
processes where the distribution of X is called the m�fold convolution of the
distribution of Yj �� �Ref� 	�� page ���� This technique is best suited for distri�
butions for which the generation of random variable X is more easily expressed
as a sum of several IID random variables� The implementation of this technique
involves the generation of Y�� Y�� � � � � Yk� IID� each with distribution function

��



F� and the subsequent return of random variate X � Y�  Y�  � � � Yk� �Ref�
	�� page ��������

� Acceptance�Rejection� This is a less direct approach than the aforemen�
tioned techniques� yet is still useful� particularly when a more direct method
is too di�cult or costly� This method requires the speci�cation of a function
t that majorizes� the density function f � This technique involves generating a
Y that has density r� and generating a U � U��� 	�� that is independent of Y �
If U � f�Y �

t�Y �
� this method must return the random variate X � Y � otherwise� it

generates a new value and similarly tests it� �Ref� 	�� page ����

The method used to generate a random variate should be chosen based upon

the particular distribution the random variate is to be drawn from� and the ease and

reliability with which random variates can be generated for that distribution� The

generation of random variates is considered reliable if the occurrence of individual

random variates is statistically equivalent to the distribution from which they are

derived��Ref� 	�� page ����

If the distribution is of a known type� implementations are readily available that

require little work and promise the accurate generation of random variates� Otherwise�

the easiest method to implement is most likely Inverse Transform� Inverse Transform

can be an easy method because random variates are generated from the inverse of

the distribution function F � inverting the distribution function may be a simple task�

However� for some distributions� the inverse may be unde�ned� For example� the

Gaussian distribution function cannot be inverted because it does not have a closed

form expression �Ref� 	�� pages ��������� While there are numerical methods to

evaluate F�� when there is no closed form� such an Inverse Transform may not be

the most computationally e�cient method to use� If the distribution in question is

multi�modal� or a combination of two or more di�erent distributions� random variate

generation becomes more di�cult� and Composition or Convolution should be used�

�Majorizes� t�x� � f�x��

��



a� Generating Gaussian Random Variates

The Gaussian distribution is characterized by the �rst moment �mean�

and second moment �variance�� A random variate X � N��� 	� can be used to obtain

some X � � N��� ��� by setting X � � �  �X� The ability to generate this data from

the �rst and second moments is helpful� because it allows us to focus on obtaining

standard Gaussian random variates �N��� 	��� Random variates particular to any

Gaussian distribution can be obtained using the above computation��Ref� 	�� pages

�
���
	�

There are two commonly used methods for obtaining standard N��� 	�

random variates� The �rst is the Box and Muller method� which is e�ective but has

a limitation when used with linear congruential random number generators�LCGs��

�LCGs are explained below�� We now explain the Box and Muller method� and then

explain this limitation� The Box and Muller method begins by generating two random

variates� U� and U�� from an IID U��� 	� generator� The variables X� and X� are

generated using the following formulae�

X� �
p�� lnU� cos ��U�

X� �
p�� lnU� sin ��U�

X� and X� are then IID N��� 	� random variates� The limitation alluded to above

can be easily seen when U� and U� are not true IID U��� 	� random variables� but are

dependent� which might can occur if U� and U� are generated using the same seed�

Linear congruential generators rely on recursion to generate numbers� The recursive

formula for a linear congruential generator is as follows�

Zi � �aZi��  c��mod m�

In this formula� m is the modulus� a is the multiplier� c is the increment� and Z�

the starting value or seed�Ref� 	�� page ����� The problem occurs because U� is a

function of U� as shown in the recursive relation above� This dependency can cause

X� and X� to fall on a spiral in �X��X�� space� because they are not independent�

��



identically distributed� random variates� Because of the possibility of this kind of

restrictive dependency� the Box and Muller method should not be used when only a

single stream of a linear congruential generator is available� but can be used if two

U��� 	� random variables from separate seeds are available��Ref� 	�� page ���� �
	�

A second method for obtaining standard N��� 	� random variates is

known as the polar method� This method is suitable for use with a single linear

congruential generator seed� N��� 	� random variates are generated using the following

algorithm �Ref� 	�� pages �
	��
���

	� Generate U� and U� as IID U��� 	� variables�

�� Let Vi � �Ui � 	 for i � 	� ��
�� Let W � V �

�  V �
� �

�� If W � 	� go back to step 	�

�� If W � 	�
let Y �

q
�� lnW

W

let X� � V�Y

let X� � V�Y �

�� X� and X� are IID N��� 	� random variates�

b� Generating Exponential Random Variates

The other distribution needed for our SmartNet simulator was the expo�

nential distribution� The exponential distribution is characterized by the �rst moment�

sometimes called the mean or simply �� While the polar method is best suited for

generating Gaussian random variates� the inverse�transform method proves to be the

simplest and most accurate method for generating exponential variates� It is suitable

because both the exponential distribution function and its inverse can be expressed

using closed form equations� An exponential random variateX can be generated using

the following simple algorithm �Ref� 	�� page �����

	� Generate U as an IID U��� 	� variable�

�� Let X � �� lnU �

��



�� Return X�

Figure 	� shows an exponential distribution with mean 	���

0

100

200

300

400

500

600

700

800

900

1000

0 100 200 300 400 500 600 700 800 900

F
re

qu
en

cy

Random Variates

Exponential Distribution, mean = 100

Mean intersection with curve

"hdata"

Figure 	�� An Example of an Exponential Distribution� mean of 	���

E� CONCLUDING REMARKS

This chapter has explained simulation in general� discrete event simulation in

particular� and described in detail the generation of random variates for use in discrete

event simulations� The next chapter will explain how discrete event simulation and

random variate generation have been added directly to SmartNet �Ref� 	� �� �� ���

��



IV� THE SMARTNET SIMULATOR

A� INTRODUCTION

This chapter explains changes and enhancements made to the original Smart�

Net simulator� �Ref� 	��� The use of Discrete Event Simulation in the SmartNet

simulator is discussed in Section C� Section D describes how we went about alleviat�

ing the limitations of the original SmartNet simulator�

B� BACKGROUND INFORMATION

As we saw in Chapter II� SmartNet is a very capable scheduling framework

with numerous and powerful operational modes� One of those modes is the SmartNet

simulator mode� The simulator itself has powerful features that make it a useful tool�

however� it also possesses certain limitations��

C� DISCRETE EVENT SIMULATION AND THE SMART�
NET SIMULATOR

The SmartNet simulator permits the operation of all aspects of SmartNet to be

simulated using discrete event simulation� As we saw in Chapter III� when performing

discrete event simulation� we need to identify events that trigger both the advancement

of simulated time and the collection of system state variable data� Two of the events

currently tracked by the SmartNet simulator are


	� Job Start� This event occurs when a job is started �the actual execution of
the job is simulated when SmartNet is run in simulator mode� on a machine
in accordance with the schedule created by SmartNet�

�� Job End� This event occurs when job execution completes�

�The explanation of SmartNet provided in Chapter II provides more detailed de�nitions of many
terms found in this chapter�

�Several of these limitations have been corrected via this research� Those changes are discussed
within this chapter and in Appendices B and C�

��



These are two of the the most important events to SmartNet�s run�time performance

because they are the crucial components of the execution of the schedule that SmartNet

creates�� These two events bracket a job�s run�time� a duration that can take anywhere

from micro�seconds to several days� depending upon the job and the machine� As a

job begins� the time of its Job Start event is recorded and reported� When that same

job completes �a Job End event�� the run�time duration of that job is reported� and

the simulation clock advanced to that point� In SmartNet simulation mode� the job

does not actually execute� but a simulated run�time is used instead� The result is the

ability to simulate the execution of a schedule that might take several days to run if

the jobs were allowed to actually execute� but which takes several minutes instead�

Figure 	� is an example demonstrating both the strength of discrete event simulation

in SmartNet and illustrating event occurrences�

Unfortunately� we do not know what the exact run�time duration of a particular

job on a particular machine would be� When SmartNet is actually running� start and

�nish times of jobs re�ect actual wall clock time�� In this case� run�times are real�

However� because the simulator does not actually execute jobs� an estimate of the

actual run�time duration is needed�

�� Advantages of the SmartNet Simulator

Using the SmartNet simulator provides de�nite advantages� both from the as�

pect of experimental capabilities and from the aspect of design� We already mentioned

its capability to simulate the execution of complex schedules in several minutes that

would� in reality� require days to complete� This capability gives SmartNet research�

ers the opportunity to compare the performance of di�erent scheduling algorithms�

Furthermore� there are design advantages because the simulator mode is built directly

�While the creation of a near�optimal schedule is the true bene�t gained from using SmartNet� it
is not an event on which we concentrate in our simulation experiments�

�Wall clock time is time as we perceive it throughout our day�to�day activities� It is the time we
keep on the clocks in our home�

��



Event Occurs

Real Time 07:42:03

Job 1 Begins

Simulated Time set to

00:00

Real Time 07:42:07

Job 1 Ends

Job 2 Begins

Simulated Time set to

Real Time 07:42:12

Job 3 Ends

Simulated Time set to

Real Time versus
Simulated Time Advance
in the SmartNet Simulator

Job 1 Job 2 Job 3

00:01:15

Real Time 07:42:10

Job 2 Ends

Job 3 Begins

Simulated Time set to

00:12:20

00:20:30

Figure 	�� Real Time versus Simulated Time in the SmartNet Simulator� Three jobs�
scheduled on one machine� The �gure depicts simulated time advancement� real time�
and event occurrences�

into SmartNet� helping the researcher to place a greater degree of con�dence upon

their research results� When using the SmartNet simulator� we are actually running

SmartNet in simulation mode� This is important for two reasons� First� the simulator

is an integral part of SmartNet� as opposed to being a removable segment of code or

another application altogether� This means that the schedule� scheduling algorithms�

database� default �les� and inter� and intra�process communication resulting from or

used by SmartNet in true operational mode are also used by SmartNet when run in

simulation mode� Second� any and all changes to SmartNet source code� to include

updates� implicitly change or update the simulator� There is no need for a duplication

of e�ort� with one team working on improving SmartNet and another team working

�




on improving a simulation of SmartNet �Ref� ��� We have an economy of e�ort that

results in a better simulation tool�

�� Limitation of the Original SmartNet Simulator

The original SmartNet simulator had one major limitation� As we have seen�

the simulator uses Expected Time to Complete �ETC� values for each job�machine

pair� provided in the database� to build the schedule� Schedule�building is the intended

use of the ETC values� As a �rst attempt� the original simulator was built to use the

ETC values found in the database as the simulated job run�time duration� This meant

that simulated jobs always ran for the exact amount of time they were scheduled to

run� In reality� even when a job is the only load on all of the resources� the non�

determinism associated with reading from�writing to disks and memory results in

two di�erent run�times for the same job with the same input� It is very di�cult to

exactly predict job run�times�

Therefore� our simulator should be able to simulate run�times of jobs according

to run�time distribution characteristics found in various compute environments� We

know that if a job is run repeatedly on a speci�c machine� it will almost never complete

with the same duration� For example� if we run JOB� 	��� times on MACHINE�A� we

may see 	��� di�erent run�times� These 	��� run�time durations can be characterized

by the distribution that they form� This distribution is speci�c to JOB� running on

MACHINE�A�� JOB� running on MACHINE�A might always take at least ��	��� seconds

to complete� The distribution of the completion times above ��	��� seconds might

approximate an exponential distribution with mean ��
��

�
JOB� running on MACHINE�B may have an altogether di�erent run�time distribution� This is

particularly true if MACHINE�B and MACHINE�A are machines with di�erent architectures or with
di�erent processing capabilities�

��



D� ALLEVIATING THE SMARTNET SIMULATOR LIM�
ITATION

The SmartNet simulator needed to be modi�ed so that the scheduled jobs that

it simulates do not always execute for exactly the mean run�time� Speci�cally� we

needed to alter the simulator so that run�time durations are not always identical to

the ETC values used to create the schedule� The simulated run�time durations need to

vary� however� they need to vary realistically� This should be done by incorporating

run�time distribution data into the generation of simulated run�times� We have made

these changes� they are presented in the following section�

�� Enhancements Made to the SmartNet Simulator

We enhanced the SmartNet simulator to allow job run�times to be derived from

a run�time distribution� Doing so allowed jobs to be run with durations that varied

in a well�de�ned way and was not always equal to the ETC values� The ETC values

are either the mean of historical run�time durations or user estimates� Permitting jobs

to run for non�ETC times entailed changes to both the simulator itself as well as to

the I�O routines that read and write the SmartNet database� We added the ability

to specify� within the database� not only a job�s mean run�time� but also its type

of distribution �recognizing both Gaussian and exponential distributions for reasons

explained later� and both its second and third moments�

Due to the modular fashion in which SmartNet is built� the number of changes

that we had to make to the actual code� above and beyond adding our own libraries�

were few� However� we did spend a substantial amount of time reading the SmartNet

code� identifying and �xing bugs� and correcting its Make�les to operate correctly at

our site �Ref� 	��� Appendices B and C provide detailed explanations of the �les that

we altered and created� We also enumerate the changes that we made to to each �le�

In our explanations in Appendices B and C� we name the enhanced and added �les

relative to the SOLARIS directory� which is where the SmartNet source code is installed�

We will assume that these �les will be located in the SOLARIS�src�sn�program�

�	



subdirectory� unless otherwise explicitly stated�

E� CONCLUDING REMARKS

With our enhancements� we now have a simulator that gives more realistic

performance than the original version� We can alter characteristics of the run�time

distribution for any and all job�machine pairs� Further� we have the ability to add

additional distribution types with relative ease� since the random number generators�

distribution name� and 	st� �nd� and �d moments are already included in the database

during the simulation�

��



V� EXPERIMENTS

A� INTRODUCTION

This chapter explains the simulation experiments we performed on SmartNet

using the SmartNet simulator� The initial goal of the simulation experiments was to

determine whether using intelligent scheduling would be bene�cial� even if the jobs

that were scheduled did not run for exactly the amount of time that we expected� In

particular� we were concerned about whether it would still be bene�cial to use intelli�

gent scheduling if one or several jobs run for a substantially di�erent amount of time

than expected� Because determining a perfect schedule is an NP�complete problem�

SmartNet is a scheduling framework for heterogeneous high performance computing

that contains many di�erent �polynomial� scheduling heuristics �Ref� 	�� These in�

clude several O�mn�� Greedy Algorithms �� an O�mn� Fast Greedy Algorithm� an

O�mn� Limited Best Assignment �LBA� Algorithm� an O�mn� Opportunistic Load

Balancing �OLB� Algorithm� and a variable complexity genetic algorithm� SmartNet

pioneered the use of intelligent schedulers that accounted for both the Expected Time

to Complete �ETC� of a job on each di�erent machine and the expected load on each

machine� In our simulation experiments we use the O�mn�� Greedy Algorithms� the

O�mn� Fast Greedy Algorithm� the OLB Algorithm� and the LBA Algorithm� All

of the algorithms� except the OLB Algorithm� use the ETC value to compute the

schedule� The LBA Algorithm does not take into account the expected load on the

machines� The primary reason for this study is because jobs rarely execute for ex�

actly the ETC time� which in SmartNet�s case is generally the average of previous

run�times with the same compute characteristics �Ref� ��� This di�erence between

actual and predicted run�times often occurs because all of the compute characterist�

�If an administrator installs SmartNet so that it uses these Greedy algorithms� SmartNet computes
schedules for each of three di�erent Greedy based algorithms and implements the one whose predicted
performance is the best�

��



ics �Ref� �� are not known or enumerated by the designer of the users program� and

because the time to access memory and�or a disk is stochastic and not deterministic�

In those cases where one or more of the jobs being scheduled have run�times that

could di�er substantially from the expected time� we need to determine whether there

is still an advantage to using an algorithm that makes use of expected run�times or

whether a computationally simpler algorithm that does not require looking up ETC

values� such as Opportunistic Load Balancing �OLB�� might not yield equivalently

good performance�

As we began investigating this problem� we noticed that� for di�erent ETC

matrices�� the performance of the various algorithms di�ered drastically� Therefore� in

addition to our originally planned study� we categorized certain types of heterogeneity

and ran experiments for many of these categories�

We ran our experiments using the SmartNet simulator mode rather than ac�

tually executing jobs under SmartNet� The simulator mode both gave us greater

control over the input parameters and allowed us to complete more experiments in a

reasonable amount of time� We begin this chapter with an explanation of the para�

meters we varied in the experiments� These parameters include both the distributions

and various categories of heterogeneity� In Section C� we describe the simulation

experiments that we performed� present the data� and explain our results� Finally�

we discuss the theoretical performance limits of the SmartNet scheduling algorithms�

compare the performance of SmartNet�s O�mn�� Greedy Algorithm with its O�mn�

Fast Greedy scheduling algorithm� investigate the dependence of the performance of

SmartNet�s various algorithms on the arrival order of job requests� and �nally examine

the performance of some of SmartNet�s algorithms when the matrix representing the

job�machine ETC values is of mixed heterogeneity�

�An ETC matrix represents estimated performance of all the di�erent jobs on all the di�erent
available machines� A speci�c element of the matrix represents Expected Time to Complete of a
speci�c job �row� on a speci�c machine �column��

��



B� PARAMETERS

As we developed the simulation experiments performed for this thesis� we found

a need to specify two sets of parameters per experiment


	� The run�time distributions used� and

�� the category of heterogeneity involved�

In order to determine some realistic job�machine run�time distributions that

we would input into the SmartNet simulator for our experiments� we executed some

programs on various parallel processors a statistically signi�cant number of times

and analyzed their run�time distributions� We describe these experiments in detail in

Section 	� We expound fully on our categorization of job�machine heterogeneity in

Section ��

�� Job Run�time Distributions

In Chapter III� we explained why job�machine run�times are typically not con�

stant� but rather vary according to some distribution� We also discussed how we

enhanced the SmartNet simulator to generate simulated run�time durations from a

speci�ed distribution� thereby permitting the simulation to more accurately re�ect the

true behavior of jobs� Testing the performance of SmartNet when the run�times of

jobs are drawn from a particular distribution is essential to this thesis� but �rst we

had to determine some realistic distributions that we would use in our simulations�

Therefore� we repeatedly executed some parallel and sequential programs� gathered

run�time statistics� and analyzed them�

We performed several experiments using the NAS Benchmarks �Ref� 	��� The

NAS Benchmarks were used to determine the types of run�time distributions that may

be typical for at least some jobs on some machines� We needed to determine sample

parameters for these run�time distributions so that they could be reproduced by the

SmartNet simulator� We used distributions and parameters observed during these

NAS Benchmark tests for the run�time distributions in our simulation experiments�

��



While performing these tests� we controlled the following environmental characterist�

ics�

� Server location� We ran experiments where the executable and input data
and the output generated were located on the executing machine� as well as
experiments where all of this data was located on a shared �le server�

� Network and server load� When the executable and data were obtained from a
�le server� we ran experiments where both the network and the �le server were
both heavily and lightly loaded�

� Uni� or Multiprocessor� We ran some experiments where the programs had
been compiled and executed on only a single processor of our Silicon Graphics
multiprocessor computers� and other experiments where the programs were
compiled and executed on multiple processors of the same machines�

� Amount of memory� We ran the jobs on two di�erent multiprocessor Silicon
Graphics machines� They each contained substantially di�erent amounts of
memory� One� caesar� had �� MBytes and the other� elvis� had 	
� Mbytes�

� Processor speed� caesar has four ��� Mhz MIPS R���� processors� while
elvis has four 	�� Mhz MIPS R���� processors�

We utilized a Silicon Graphics �SGI� Challenge�L multiprocessor machine and a SGI

Onyxmultiprocessor machine �elvis� throughout these experiments� They both ran the

same version of the IRIX�� operating system� version ���� We used two machines so

that the performance characteristics and run�time distributions of the jobs run in these

experiments would provide us with a bigger picture of job run�time characteristics�

Table V summarizes the con�gurations of the machines caesar and elvis�

The jobs that we used throughout these experiments were from two sources


NASA�s reference implementation for some of the NAS Benchmarks� and our own im�

plementations of other NAS Benchmarks that met the NAS Benchmark criteria� Four

of the tests use some version of the NAS Integer Sort �IS� Benchmark� implemented

either in parallel on four processors� or in single processor mode� Two other tests

used the NAS Embarrassingly Parallel �EP� Benchmark run on a single processor�

We now explain our experiments and their results�

��



caesar elvis

Type Machine SGI Challenge L SGI Onyx
Processor Speed ��� MHz 	�� MHz
Processor Type MIPS R���� MIPS R����

Number of Processors � �
Amount of Memory �� Mbytes 	
� Mbytes
Secondary Uni�ed

Instruction�Data Cache � Mb 	 Mb

Table V� Con�guration of SGI machines caesar and elvis�

a� Integer Sort� Executed on Four Processors

This experiment examined the run�time distribution of a version of

the NAS Integer Sort Benchmark executed on four processors� We implemented the

integer sort using a counting sort �Ref� �� pages 	���	��� algorithm� We used Sil�

icon Graphic�s light weight process �thread� support functions� including mfork�
�

to implement our version of this benchmark� Below� we provide pseudo�code for the

counting sort�

The number of initial values to be sorted �TOTAL KEYS�� which range

between 	 and MAX KEY� are stored in the array key array� The algorithm �rst counts

how many of each of the di�erent values between 	 and MAX KEY there are� storing the

count in the corresponding element of the array count array� When the algorithm

completes� final array will contain the original values but in sorted order�

for i � � to MAX�KEY count�array�i� � �

for j � � to TOTAL�KEYS

count�array�key�array�j�� � count�array�key�array�j� � ��

comment� count�array�i� now contains

the number of elements equal to i

for i � � to MAX�KEY

count�array�i� � count�array�i� �count�array�i � ��

comment� count�array�i� now contains

the number of elements less than or equal to i

��



for j � TOTAL�KEYS down to �

final�array�count�array�key�array�j��� � key�array�j�

count�array�key�array�j�� � count�array�key�array�j�� � �

comment� final�array now holds the sorted keys

The actual code that we executed on the SGIs in shown in Appendix D�

We ran this sort across a heavily loaded network� obtaining both the

executable and data from a �le server that was also heavily loaded� When run on

caesar� the run�time distribution� for 	�� executions� appears Gaussian� Figure 	�

shows a histogram of this distribution� When run on elvis� the run�time distribution�

again for 	�� executions� appears exponential and is shown in Figure 	�� We note that

the truncation of the exponential distribution shown in Figure 	� occurs at approxim�

ately ���� That means that the sort had to run for at least ��� seconds before stopping�

The distribution that we see very closely matches an exponential distribution with a

mean of around ����� translated ��� seconds to the right� We expect that many jobs

would have a distribution similar to this� because all jobs have to run at least some

amount of time��

In these experiments� we also see that memory size� and so� the need

to swap to local disk� can have a de�nite e�ect upon the run�time distribution of a

job� The integer sort on elvis completes� on average� ��� sooner than the same job

on caesar� We note that� in this case� the amount of memory has more in�uence on

the run�time of the job than does the speed of the processor� Of primary importance�

however� is the observation indicating that the same job� running on two di�erent

machines� not only has di�erent mean run�times� but the distribution of run�times is

di�erent� yielding a Gaussian�like distribution on one machine and an exponential�like

distribution on the other�

�An exponential distribution is truncated at ���� If applied� without translation� in this case� that
would mean there is the possibility of near�zero run�time�

��



0

2

4

6

8

10

12

14

16

8.8 8.9 9 9.1 9.2 9.3 9.4

Fr
eq

ue
nc

y

Run-time, seconds

Parallel Counting Sort on Caesar

100 Samples

Loaded network

Mean:  9.093

Sigma:  0.0983

"fcaesar.dat"

Figure 	�� Forked Counting Sort� caesar�

b� Integer Sort� Single Processor

This experiment is the same as that discussed in the last section� with

the exception of being run on a single processor instead of being distributed across

four processors� Although a slightly di�erent C  implementation was used� see

Appendix D� we again based our program on the counting sort pseudo�code presented

earlier�

When the integer sort was run on caesar� the run�time distribution was

not easily characterized� however� it appears related to a Gaussian distribution� The

histogram of the distribution� shown in Figure 	�� is multi�modal� which indicates

that multiple distributions may be present� While this experiment does not provide

us with de�nitive results� it does point to the fact that run�time distributions can be

quite complex�

When the sequential integer sort was run on elvis� the run�time dis�

tributions were also multi�modal� Figure 	� shows a histogram of this run�time dis�

�




0

10

20

30

40

50

60

70

80

3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6

Fr
eq

ue
nc

y

Run-time, seconds

Parallel Counting Sort on Elvis

100 Samples

Loaded network

Mean:  3.04

Sigma:  0.234

"felvis.dat"

Figure 	�� Forked Counting Sort� elvis�

tribution� which is also not easy to characterize� The multiple modes again suggests

two di�erent distributions which exist under perhaps di�erent run�time speci�c con�

ditions� We suspect that these conditions are related to changes in the network and

server loads�

Once again� this set of experiments showed us that additional memory

can greatly enhance run�time performance� The tests on elvis ran ���� faster than

those tests run on caesar� which has the faster processors� The tests also show that

run�time distributions can be very complex� and may be di�cult to reproduce in a

simulation� Although this thesis� experiments did not use such complex distributions�

they should be modeled in future work�

c� Embarrassingly Parallel NAS Benchmark

The next set of experiments that we describe compared the run�time

distributions of compute intensive jobs run from local disk to those run across the

network from a �le server� The tests that we describe in this section were executed

��



0

5

10

15

20

7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 8 8.1

Fr
eq

ue
nc

y

Run-time, seconds

Counting Sort on Caesar, Single Processor

100 Samples

Loaded network

Mean:  7.642

Sigma:  0.723

"scaesar.dat"

Figure 	�� Counting Sort� caesar� single processor�

only on caesar because elvis did not have su�ciently large local disk available� We

used the reference implementation �Ref� 	��� from NASA� of the NAS Embarrassingly

Parallel �EP� Benchmark� This implementation uses the portable message passing

interface�MPI� �Ref� 	
� to parallelize the code� The tests we ran� however� were

compiled to be executed on a single processor�� The EP Benchmark was run 	��

times for each test�

Figure 	� shows the run�time distribution of the EP Benchmark run

	�� times when the executable is stored on caesar�s local disk� This distribution

appears exponential� We see the same e�ect here as we saw in the integer sort run on

four processors�� There is a shift of ��	 seconds to the right� after which we see an

exponential distribution with mean �����

�The MPI mechanism is still utilized in the EP Benchmark when it is compiled for a single
processor�

�The number of samples at the far left end of the distribution are small enough when compared
to the total number of samples to be considered a statistical 	uke� The data point is included for

�	



0

5

10

15

20

25

30

0.885 0.89 0.895 0.9 0.905 0.91 0.915 0.92 0.925 0.93 0.935

Fr
eq

ue
nc

y

Run-time, seconds

Counting Sort on Elvis, Single Processor

100 Samples

Loaded network

Mean:  1.053

Sigma:  0.0988

"selvis.dat"

Figure 	�� Counting Sort� elvis� single processor�

We also examined the run�time distribution of the same EP Benchmark

code when executed on caesar but obtained across a lightly loaded network from a

lightly loaded �le server� Figure 	
 shows the histogram from 	�� EP Benchmark

run�times� The run�time distribution appears to be truncated Gaussian�� Like the

experiment above where the EP Benchmark was stored on local disk� the truncation

value re�ects the minimum time that it takes to run this EP Benchmark when the

executable must be obtained from our particular �le server over our local network�

That truncation appears again at ��	 seconds� The di�erence here� though� is that

there is a di�erent distribution of run�times throughout the range of values� We

attribute this to the in�uence of other loads on the network and �le server on the total

compute time for reach job�

completeness�
�In this thesis� we sometimes use the term 
truncated Gaussian� to refer to what is technically an

Erlang or Gamma distribution� Both Erlang and Gamma distributions are strongly related to both
Gaussian and exponential distributions�

��



0

10

20

30

40

50

60

70

80

740 745 750 755 760 765 770 775 780

Fr
eq

ue
nc

y

Run-time, seconds

epA1 NAS Benchmark on Caesar

100 Samples

Code on Machine; no network involved

Mean:  743.72

Sigma:  1.57

"epA1-caesar.dat"

Figure 	�� epA	 NAS Benchmark� Executable Residing on Local Disk�

�� Categories of Heterogeneity

The other parameter that we need to examine and that we describe in this sec�

tion concerns the category of heterogeneity we use in our experiments� We quantify

the categories of heterogeneity according to two axes� one axis representing the job

heterogeneity and the other axis representing machine heterogeneity� A heterogeneous

computing environment is commonly thought of as a network of machines of di�ering

or similar architectures� often having� at the very least� di�ering performance charac�

teristics such as processor speed� quantities of cache� and amount of main memory�

For example� two machines may be able to execute the same job� but one machine may

execute that job an order of magnitude faster than the other machine� If the machines

are nearly identical� then there is very little heterogeneity amongst the machines� If the

machines are vastly di�erent� then the collection of machines is very heterogeneous�

Our categorization of heterogeneity encompasses this common�sense concept� but is

more general in scope and more technically rigorous in its de�nition�

��



0

5

10

15

20

25

30

35

742 743 744 745 746 747 748 749

Fr
eq

ue
nc

y

Run-time, seconds

epA1 NAS Benchmark on Caesar

100 Samples

Run over network

Mean:  743.717

Sigma:  1.568

"epA1-aquarius.dat"

Figure 	
� epA	 NAS Benchmark� Files obtained over a lightly loaded network�

However� both machines and jobs must be considered in any good charac�

terization of computational heterogeneity� Jobs� like machines can be either very

heterogeneous� slightly heterogeneous �e�g�� one instantiation of a C  compiler and

another instantiation of the same C  compiler executing with a higher speci�ed level

of optimization� or homogeneous �as we might expect to execute on special�purpose

hardware�� As an example� we consider a collection of jobs that is to be scheduled� If

all the jobs are identical� e�g�� all compiling the same source code and using the same

speci�ed run�time parameters� there is no heterogeneity amongst the jobs� If the jobs

are all vastly di�erent� then the jobs are very heterogeneous�

Therefore� we use two axes� one representing the heterogeneity of jobs and the

other representing the heterogeneity of machines� to categorize the heterogeneity of a

computing system� The relationship of job and machine heterogeneity is depicted in

Figure ��� part �a��

We know that SmartNet uses estimates of the run�times of its di�erent jobs

��



Planes of Consistency

Jobs

Machines

Lo-Lo

Hi-Lo Hi-Hi

Lo-Hi

Quadrants of

Heterogeneity

Consistency

(a) (b)

Machine Heterogeneity

Jo
b

 H
et

er
og

en
ei

ty

Figure ��� Quadrants of Heterogeneity and Categories of Consistency� Part �a� shows
the two dimensional relationship of heterogeneity between jobs and machines� Part
�b� shows the third dimension� consistency� and the numerous planes of consistency
that can exist in di�erent scenarios�

on its di�erent machines to build a schedule detailing what jobs should run on which

machine� For our simulation experiments� heterogeneity is introduced through setting

appropriate parameters in the SmartNet database �See Appendix A�� Speci�cally�

heterogeneity of both jobs and machines is introduced into SmartNet through ap�

propriately setting the ETC values of each job�machine combination present in the

database� The actual database is quite complex� containing internet addresses of ma�

chines and �optionally� the longitudinal and latitudinal coordinates of those machines

As such� we will represent its heterogeneity information in a more easily understood

matrix format� An example of such a matrix is shown in Table VI�

��



Machine
Job 	 � � � �

	 mean ����� 		 ��
 ���
� ���
� mean �� 	��� ��	
 �� �����
� mean 	��� 
� 	
�� �����	 ���	
� mean ���
� 
��	 �
 ���� 	���
� mean �� ����� 	������ 		��� 	�

Machine
Job � � � 
 	�

	 mean �
 ���

 	�
� ����� ����
� mean ���
� ���� 		��� 	���� ���
� mean ��� 
 	
� ��� �����
� mean ���	
 ����� ��� 		�� 	���
� mean ��� ��� ���� ����
	 ���

Table VI� High�Job� High�Machine Heterogeneity Matrix�

For Table VI� we note that the average variance	 for both the rows and the

columns is very large� on the order of 	���� Furthermore� we note that the distribution

of both the column and row variances is unimodal� These facts indicate that the

average job�machine run�times shown in this table fall at a point whose coordinates

correspond to both High�Job Heterogeneity and High�Machine Heterogeneity �See Hi�

Hi in Figure ���� In contrast� a matrix where the average variance for both the rows

and the columns might be on the order of 	�� would correspond to both lower machine

and lower job heterogeneity �See Lo�Lo in Figure ����

Our simulation experiments were built to examine four combinations of het�

erogeneity� It requires approximately �� hours� not including setup time� to run

a complete simulation experiment
 and approximately six hours to run a Baseline

�The variances referred to here are variances of the run�time values in the ETC matrices�

�A complete simulation experiment requires that SmartNet build and execute �
 schedules for
each database and the four di�erent command �les�

��



experiment�� We �rst chose to examine matrices representing four extreme values in

our coordinate system� These four combinations can be thought of as quadrants of

heterogeneity�

� High�Job� High�Machine Heterogeneity �Hi�Hi�� All jobs perform very di�er�
ently on all machines� As noted above� the variances for our complete matrix
in Table VI� of both jobs and machines� are on the order of 	����

� High�Job� Low�Machine Heterogeneity �Hi�Lo�� Each individual job performs
similarly on all machines� however� no jobs perform similarly� For our sample
matrix in Appendix E� the variance of jobs is on the order of 	��� while the
variance of machines is on the order of 	�
�

� Low�Job� High�Machine Heterogeneity �Lo�Hi�� All jobs perform similarly on
the same machine� however� the jobs obtain di�erent performance on di�erent
machines� For our sample matrix in Appendix E� the variance the variance of
jobs is on the order of 	��� while the variance of machines is on the order of
	�	�

� Low�Job� Low�Machine Heterogeneity �Lo�Lo�� All jobs perform similarly on
every machine� For our sample matrix in Appendix E� the variance of both
jobs and machines is on the order of 	���

There is a third dimension in the relationship between job and machine het�

erogeneity� however� which we call consistency� Consistency refers to the performance

similarities of all jobs across machines� If all jobs perform best on the same machines

�and subsequently perform worse on the same machines� then the schedule being ex�

ecuted is very consistent� We expect this situation to be common in some engineering

laboratories where initially all machines might be workstations bought from the same

manufacturer� with the same amount of memory and types of processor�s�� As time

goes on� machines are upgraded� A processor is added� Memory is added� But� typic�

ally� the machine with the fastest processor would also contain the most memory and

the most cache� For now� we view this as adding a discrete axis to our already existing

�A Baseline experiment consists of SmartNet building and executing one schedule for a single
database and each of the four di�erent command �les�

��



two axes of heterogeneity� one which represents just two� ��dimensional planes
 con�

sistent and inconsistent� Future work is needed to determine how we might quantify

this dimension as a continuous axis� Figure �	 shows the existence of consistency

between two jobs and four machines� Conversely� if jobs perform well on di�erent

JOB 2

JOB 1

MACHINE1
MACHINE2

MACHINE3
MACHINE4

EXECUTION
FOR

TIME

Figure �	� Consistency between two jobs and four machines� Both jobs perform better
on the same machines�

machines� and poorly on di�erent machines� then the schedule being executed is in�

consistent� Figure �� shows inconsistency between two jobs and four machines� We

depict consistency� the third dimension of heterogeneity� in Figure ��� part �b��

To be brief� our nomenclature only includes mention of consistency if the mat�

rix we are dealing with is consistent� In other words� when the term �High�Job�

High�Machine Heterogeneity� is used� the matrix we are using is inconsistent� If

the term �High�Job� High�Machine� Consistent Heterogeneity� is used� that matrix is

consistent�

��



JOB 2

JOB 1

MACHINE1
MACHINE2

MACHINE3
MACHINE4

TIME

FOR

EXECUTION

Figure ��� Inconsistency between two jobs and four machines� The jobs perform
di�erently on the di�erent machines� there is no consistency of performance�

C� SIMULATION EXPERIMENTS

We performed two simulation experiments on SmartNet� aimed at examining

how well the scheduling algorithms performed when the jobs scheduled did not execute

for exactly the mean �of the previous run�times� speci�ed in the SmartNet database�

We �rst ran Baseline experiments that compared the performance of SmartNet�s vari�

ous algorithms for the di�erent categories of heterogeneity� without considering con�

sistency� Following that� we identi�ed the Baseline matrices for which the O�mn��

Greedy Algorithm out�performed both the Opportunistic Load Balancing �OLB� Al�

gorithm and the Limited Best Assignment �LBA� Algorithm� We term the matrices

in this class to be signi�cant matrices� We then ran experiments for consistent

matrices that corresponded to the signi�cant matrices� that is� we ran additional

Baseline experiments using matrices that were identical to the signi�cant matrices�

�




except that the contents of each row was sorted� from smallest to largest��� We term

the sorted version of these matrices as consistent signi�cant matrices� Finally� for all

signi�cant matrices� both consistent and inconsistent� we ran additional simulation

experiments where the jobs did not execute for exactly the mean of the previous run�

times� however� in one case the run�time distribution was assumed to be Gaussian�

and for another case� it was assumed to be exponential� The details of the experiments

are discussed in the following subsections�

Although the database �matrix� values for the experiments di�ered greatly� the

conduct of the experiments was similar throughout� We now describe the features that

were common to all of the experiments�

� Database Format� Although the job�machine heterogeneity di�ered for all
databases created� each database contained mean run�times for each of �ve
di�erent jobs on each of ten di�erent machines�

� Data Collection� Except for the Baseline experiments� all experiments in which
the actual run�time of a job could di�er from the predicted run�time of that
job were executed 	� times� In each run� a di�erent value was used to seed the
random number generator that was used to generate the simulated �actual� run�
time duration� The total time required to execute each schedule was summed
and the average was computed� Multiple seeds were used to ensure that our
results were not skewed��� We only ran the Baseline experiments one time�
as the execution of this schedule was always the same �because jobs ran for
exactly the predicted run�times��

� Scheduling Algorithms� We examined the performance of four scheduling al�
gorithms� which are built into SmartNet� during each simulation experiment�
These algorithms were explained in Chapter II and are listed below�

� Opportunistic Load Balancing �OLB�

� Limited Best Assignment �LBA�

� Greedy� an O�mn�� algorithm

�	We note that the average variance of each column is reduced by this sorting� but� as an example�
for our High�Job� High�Machine Heterogeneity matrices� even the consistent matrices had an average
column variance on the order of ���	�

��This is a commonmethod to reduce the in	uence of a single random number generation sequence
that may be biased�

��



� Fast Greedy� an O�mn� algorithm

Both the Greedy and Fast Greedy scheduling algorithms were pioneered by
SmartNet� The LBA Algorithm is also contained in HeNCE �Ref� ��� and the
OLB Algorithm is the only algorithm available in most resource management
systems such as Condor� LoadLeveler� and NQE� SmartNet contains all of these
algorithms� which are of di�erent complexity� because SmartNet is a scheduling
framework and di�erent algorithms are appropriate for di�erent environments�
�See also previous work done by Benton and Lemanski on scheduling of network
broadcasts �Ref� 
���

� Job Request Format� When SmartNet is run in simulation mode� jobs are
requested via a command �le� The jobs can be requested either in groups or
sequentially� For example� if we want to request job� to be executed three
times� and job� to be executed 	� times� a grouped request would ask for
job� to be run three times� and for job� to be run 	� times� To accomplish
the same thing when jobs are submitted sequentially� we might request single
executions of two di�erent jobs in the order job�� job�� job�� job�� job��
and then 	� more single requests of job�� We looked at SmartNet scheduling
algorithm performance when jobs were requested to be run in group format
and randomly sequential format� however� the majority of our experiments were
generated using randomized sequential requests� This was done because the
order of job request a�ects the schedule� The Fast Greedy Algorithmmaps and
schedules the jobs on machines in the order in which they are submitted� The
Greedy Algorithm uses the order to break ties� We chose to execute mostly
singular requests both because they more closely mimic a real environment
where di�erent jobs are submitted by di�erent users and because we wished to
examine whether these algorithms performed better or worse when sequential�
as opposed to grouped� requests were submitted�

� Job Request Sets� In order to ensure di�erent results from the grouped method�
we generated two random sequences of 	�� job requests� which we will call
����� and ������ where each individual request was chosen according to a
uniform random distribution from among �ve di�erent jobs� We also generated
two more random sets� this time of ��� job requests� calling them ����� and
������ We did this to look at performance variations between job request
orderings� as well as to examine any performance di�erences that might occur
because fewer or more jobs were requested�

� Actual Run�time Distributions� When we generated run�times that were di�er�
ent from the mean predicted run�times� we ran experiments for both Gaussian
and exponential distributions�

Based upon our experiments with the NAS IS and EP Benchmarks above� we
chose to implement a translated distribution with mean of ��� in our subsequent

�	



simulation experiments� That is� we added the expected time to compute for
a given job�machine pair� less the amount needed to keep the mean from
changing� to a value drawn from an exponential distribution with mean of
������ That is� the simulated run�times were generated using code represented
by the following pseudo�code�

� X is the ETC of the job� available from the SmartNet database�

� Y � X � ��� �The ��� is taken from the experiments discussed previously��
� Z is the random variate generated from an exponential distribution with
mean ����

� If ETC � ���� Run�time duration � Y  Z�

� If ETC � ���� Run�time duration � Z�

� Return Run�time duration�

The actual code for this function is contained in Appendix C�

Again� based upon our earlier experiments described in Section 	� we chose to
implement a truncated Gaussian distribution in our simulation experiments�
We chose to truncate left of the mean at the mean less one sigma� Below is
the pseudo�code for the algorithm we used to obtain a random variate from a
truncated Gaussian distribution for run�time duration�

� � �
p
�nd moment�

� while Run�time duration � 	st moment� �

� Generate random variate X from Gaussian distribution�

� Run�time duration � X

� Return Run�time duration�

The pseudo�code describes code used in the function generate normal�
�
which can be found in Appendix C�

�� Baseline Experiments

These experiments were used to record SmartNet�s performance when each

job executed for exactly the amount of time for which it was scheduled� The Baseline

experiment results show that there are circumstances where the Greedy and Fast

Greedy Algorithms perform comparable to either OLB or LBA� Complete results

��In later experiments� we will also permit the mean for the exponential distribution to depend
upon the job�machine pair�

��



from all of the Baseline experiments can be found in Appendix F� In this section�

we provide graphical interpretations of typical SmartNet performance for a subset of

the experiments� We note that if the run�time of an algorithm is not included in a

graph below� it performed at least an order of magnitude worse than the included

algorithms� and was omitted so that we could more readily distinguish between the

remaining algorithms�

� High�Job� High�Machine Heterogeneity� See Figure ��� For the High�Job�
High�Machine Heterogeneity matrix that we presented in Table VI� we see
that Greedy and Fast Greedy perform comparable to LBA� Since LBA is a
slightly less compute intensive scheduling algorithm� it may make sense to use
the LBA scheduling algorithm instead of Greedy or Fast Greedy in such cases�
The �gure also shows how poorly the OLB Algorithm performs compared to
the other three�

 

olb
lba

greedy
fast greedy

1
10

100
1000

10000
100000

1000000
10000000

R
un

-ti
m

e 
in

 s
ec

on
ds

 (l
og

 s
ch

al
e)

Baseline Hi-Hi Results
125-1

Figure ���

� High�Job� Low�Machine Heterogeneity� See Figure ��� For our matrix chosen
from the High�Job� Low�Machine Heterogeneity extreme� we saw that OLB
performed just about as well as the Greedy and Fast Greedy Algorithms� OLB
is also a computationally simpler scheduling algorithm� In this case� then� it
may make sense to use the OLB scheduling algorithm instead of the Greedy
or Fast Greedy Algorithms�

��



 

olb greedy fast greedy
0

20

40

60

80

100

120

140

Th
ou

sa
nd

s
R

un
-ti

m
e 

in
 s

ec
on

ds

Baseline Hi-Lo Results
125-1

Figure ���

� Low�Job� High�Machine Heterogeneity� See Figure ��� For our matrix chosen
from the Low�Job� High�Machine Heterogeneity extreme� we saw that both the
Greedy and the Fast Greedy Algorithms perform much better than OLB or
LBA�

 

lba greedy fast greedy
0

200

400

600

800

1000

R
un

-ti
m

e 
in

 s
ec

on
ds

Baseline Lo-Hi Results
125-1

Figure ���

��



� Low�Job� Low�Machine Heterogeneity� See Figure ��� For this matrix� both
the Greedy and Fast Greedy Algorithms again perform comparable to OLB�

 

olb lba greedy fast greedy
0

200

400

600

800

1000

1200

R
un

 ti
m

e 
in

 s
ec

on
ds

Baseline Lo-Lo Results
125-1

Figure ���

We recall that consistency is the third dimension in the relationship between job

and machine heterogeneity� We chose to examine two categories of heterogeneity along

the consistency axis
 High�Job� High�Machine� Consistent Heterogeneity� and Low�

Job� High�Machine� Consistent Heterogeneity� These two categories are among some

of the computing environments likely to be found today� When organizations purchase

computers� they usually buy many similar machines� These machines get upgraded

or replaced as money becomes available or as equipment breaks� Occasionally� more

expensive� specialized computers are purchased in small numbers� These are added

to the environment� This typically results in consistent behavior amongst machines

� that is� there will be some machines that all jobs run well on� and some machines

that all jobs run slower on� The results of the Baseline experiments implied that the

most interesting run�time behavior would be found in the above two categories� We

recognize that the other categories merit investigation� but are outside the scope of

��



this present thesis� We note that for both of these categories� the variance of the jobs

and machines remains similar to that found in their inconsistent counterparts�

� High�Job� High�Machine� Consistent� See Figure ��� For our matrix chosen
from this category of heterogeneity� Greedy and Fast Greedy perform better
than either the OLB or LBA Algorithms�

 

lba greedy fast greedy
0

500

1000

1500

2000

2500

R
un

-ti
m

e 
in

 s
ec

on
ds

Baseline Hi-Hi-Consistent Results
125-1

Figure ���

� Low�Job� High�Machine� Consistent� See Figure ��� Again� for our matrix
chosen from this category of heterogeneity� Greedy and Fast Greedy perform
better than either the OLB or LBA Algorithms�

To brie�y summarize the experiments we described above� we see� then� that

from these six matrices� chosen from categories that represent the extreme ends of

heterogeneity� the Greedy and Fast Greedy Algorithms develop schedules that are

worthy of the extra compute time they required in three cases� Based upon these

results� we opted to only further evaluate the Low�Job� High�Machine� High�Job�

High�Machine� Consistent� and Low�Job� High�Machine� Consistent matrices in the

remaining tests�

��



 

lba greedy fast greedy
0

100
200
300
400
500
600
700
800
900

1000

R
un

-ti
m

e 
in

 s
ec

on
ds

Baseline Lo-Hi-Consistent Results
125-1

Figure ���

�� Simulation Experiments where Jobs Ran for Times
Di�erent from the Predicted Run�times

This set of experiments examined the performance of the SmartNet scheduling

algorithms when job run�times di�ered from the ETC values that were used to develop

the schedule� For these tests� we used the enhancements that we made to the SmartNet

simulator� described in Chapter IV� Using these enhancements� we were able to input

the type of run�time distributions that the jobs being scheduled would have� Using

the experiments described in Section B of this chapter� we determined the speci�c

parameters needed to instantiate the distributions we might �nd in typical compute

intensive jobs� We simulated jobs with both exponential and truncated Gaussian

run�time distributions�

a� Exponential Distribution Experiments

The results of these experiments compare the performance of the various

SmartNet scheduling algorithms when all jobs have an exponential run�time distri�

bution� We recall from Section B of this chapter that the sample run�times from

those experiments closely �t a shifted exponential distribution with mean ���� The

��



individual results from the exponential simulation experiments� which are consistent

with the conclusions that we make in this section� can be found in Appendix F in

Table XIX�

lba
greedy

fast greedy
0

1

2

3

4

Th
ou

sa
nd

s
R

un
-ti

m
e 

in
 s

ec
on

ds

Baseline
Exponential

Exponential Lo-Hi Results
500-4

   

Figure �
�

lba
greedy

fast greedy
0

2

4

6

8

10

Th
ou

sa
nd

s
R

un
-ti

m
e 

in
 s

ec
on

ds

Baseline
Exponential

Exponential Hi-Hi-Consistent Results
500-4

Figure ���

��



lba
greedy

fast greedy
0

1

2

3

4

Th
ou

sa
nd

s
R

un
-ti

m
e 

in
 s

ec
on

ds
Baseline
Exponential

Exponential Lo-Hi-Consistent Results
500-4

Figure �	�

When the results of these experiment are compared to the Baseline

results� we see that jobs with exponential run�time distributions with mean ��� have

completion times comparable to the Baseline results� Figures �
� ��� and �	 show

these comparisons for the matrices we used in our simulations� These �gures show

that the schedules built by the SmartNet scheduling algorithms are still e�ective even

though the actual run�time of a given job on a given machine can di�er greatly from

its corresponding ETC value�

b� Truncated Gaussian Experiments

These experiments were designed to examine the performance of the

SmartNet scheduling algorithms when all jobs had truncated Gaussian run�time dis�

tributions� As in the previous experiment� this test takes advantage of the enhance�

ments made to the SmartNet simulator� While the schedule was built using ETC

data� the simulated run�times generated by the SmartNet simulator are taken from

a truncated Gaussian distribution� In Section B� we discussed the characteristics of

the truncated Gaussian run�time distribution characteristics obtained from running

the NAS EP Benchmark� We determined from those experiments that truncation oc�

�




curred left of the mean at roughly 	st moment�
p
�nd moment� or the mean less ��

Throughout this experiment� the mean� or 	st moment� was the ETC value for the in�

dividual job�machine pairs� and the �nd moment we set at ���� of the 	st moment�

or � � mean� to determine whether� if the variance was very large for all jobs� the

Greedy and Fast Greedy Algorithms still performed much better than both the LBA

and OLB algorithms� Any negative run�times that were generated occurred to the

left of the truncation point� and so were not used in the experiments� The individual

results from these experiments are included in Appendix F in Table XX�

 

lba greedy fast greedy
0

1

2

3

4

5

Th
ou

sa
nd

s
R

un
-ti

m
e 

in
 s

ec
on

ds

Baseline
T-Gaussian

Truncated Gaussian
Lo-Hi Heterogeneity Results

500-3

Figure ���

The results in Figures ��� ��� and �� show that the schedules are �nish�

ing up to ��� later than the schedules executed in the Baseline experiments� This is

not unexpected� as truncation will shift the mean of the resulting distribution to the

right� The results also show that the Greedy and Fast Greedy scheduling algorithms

still perform better than the OLB and LBA Algorithms when job run�time distribu�

tions are truncated Gaussian with very large variances� Our experiments imply that

is may be worthwhile to update the schedule as it is being executed to minimize the

e�ect of the large job variances that result from run�time distributions with very large

��



 

lba
greedy

fast greedy
0

2

4

6

8

10

12

Th
ou

sa
nd

s
R

un
-ti

m
e 

in
 s

ec
on

ds

Baseline
T-Gaussian

Truncated Gaussian
Hi-Hi-Consistent Heterogeneity Results

500-3

Figure ���

variance� in this case� with variances of ���� of the mean� This claim is justi�ed

because preliminary evidence indicates that the observed ��� increase in the mean

is not fully accounted for by the e�ects of truncation� This may warrant reschedul�

ing because of its relatively low cost� especially for schedules involving many more

 

lba
greedy

fast greedy
0

1

2

3

4

5

Th
ou

sa
nd

s
R

un
-ti

m
e 

in
 s

ec
on

ds

Baseline
T-Gaussian

Truncated Gaussian
Lo-Hi-Consistent Results

500-3

Figure ���

�	



machines and many more jobs than used throughout these simulation experiments�

D� DISCUSSION

While performing the simulation experiments described previously in this chapter�

we came across other aspects of SmartNet�s performance that warranted examination�

We �rst examine the performance of the SmartNet scheduling algorithms when com�

pared to theoretical bounds� We follow that with a speci�c comparison of the Greedy

and Fast Greedy Algorithms throughout all the simulation experiments� We then

compare the performance the Greedy and Fast Greedy Algorithms when the jobs

were submitted according to a uniform random distribution with the performance of

those algorithms when the submitted requests are sorted and grouped according to

job� Finally� we present another matrix with High�Job� High�Machine Heterogeneity

characteristics� but which performs di�erently than expected�

�� Theoretical Limits

SmartNet�s Greedy and Fast Greedy scheduling algorithms consider both the

time for each job to complete on each machine� as well as the current load on each

machine when computing a schedule� Both Greedy and Fast Greedy compute near�

optimal schedules in polynomial time� The NP�completeness of this scheduling prob�

lem and others� though� means that it would require exponential time to compute

schedules that are optimal and that polynomial time schedulers can only approach this

optimal� However� we are still interested in determining how close all the Baseline

completion times are to the mathematical minimum� We now examine that issue for

each of our six matrices that we enumerated above�

Assuming that we could examine one schedule every nanosecond� it would

require more than 	��� years to determine� through exhaustion� which schedule would

require the minimum amount of time to execute for one of our smallest experiments�

For this reason� we instead use a less tight bound� though still a bound� that we now

describe� We computed this bound� which we call the theoretical Best Case Time�

��



using the following method�

	� From the list of jobs submitted� determine how many of each job are being
scheduled� This results in a job count for each job�

�� For each job� multiply the job count by the minimum amount of time that
job could execute given that it was always assigned to its best machine� also
assuming that no other type of job is assigned to that machine� This results in
a min group time for each job�

�� Sum the min group times�

�� Divide the sum by the number of machines� The result is the Best Case Time
for the schedule to execute�

For each matrix� we computed the Best Case Time� and compared that time

to the Baseline time� The comprehensive results are shown in Table XXI� located in

Appendix F� Table XXI shows us that we get closest to theoretical Best Case Time

 

olb greedy fast greedy
0

0.05

0.1

0.15

O
ve

r T
he

or
et

ic
al

 M
in

m
um

%
 B

as
el

in
e 

R
un

-ti
m

e

Baseline Versus Theoretical Minimum
Hi-Lo Heterogeneity

Figure ��� Theoretical Best versus Baseline Completion Time� High�Job� Low�
Machine Heterogeneity� This data depicts the percentage di�erence between the the�
oretical Best Case Time and the Baseline completion time�

performance when schedules are created with our High�Job� Low�Machine and Low�

Job� Low�Machine Heterogeneity databases� Figure �� contains the High�Job� Low�

Machine Heterogeneity comparison� Figure �� contains the Low�Job� Low�Machine

��



 

olb greedy fast greedy
0

0.05

0.1

0.15

0.2

0.25

0.3

O
ve

r T
he

or
et

ic
al

 M
in

im
um

%
 B

as
el

in
e 

R
un

-ti
m

e

Baseline Versus Theoretical Minimum
Lo-Lo Heterogeneity

Figure ��� Theoretical Best versus Baseline Completion Time� Low�Job� Low�Machine
Heterogeneity� This data depicts the percentage di�erence between the theoreticalBest
Case Time and the Baseline completion time�

Heterogeneity comparison� All of the other matrices show at least a 	��� increase in

run�time duration over the Best Case Time� This is because the machine heterogeneity

is low� which means that the jobs all run fairly well on all machines� Low machine

heterogeneity gives the algorithms more good choices of machines to schedules jobs

upon� Whenever we have high machine heterogeneity� there are fewer near optimal

machine choices for the jobs� and some jobs have to be run on machines that they do

not perform well on� These results seem to indicate that the theoretical Best Case

Time can be approached if the machines being utilized are very similar�

�� O�mn� Fast Greedy versus O�mn�� Greedy

While performing the simulation experiments discussed previously� we saw the

opportunity to compare the performance of two of the scheduling algorithms pioneered

by SmartNet� The Greedy Algorithm has a complexity of O�mn��� while the Fast

Greedy Algorithm has a complexity of O�mn�� What we wanted to know is how much

of a performance gain we see when we invest in the more complex Greedy Algorithm�

��



This investment can be considerable for very large and complex schedules� and can

have a signi�cant e�ect upon overall SmartNet time of execution�

 

hihi
hilo

lohi
lolo

hihi-con
lohi-con

-0.02

0

0.02

0.04

0.06

0.08

%
 G

re
ed

y 
ov

er
 F

as
t G

re
ed

y
Greedy versus Fast Greedy

Baseline experiments

Figure ���

 

lohi hihi-con lohi-con
-0.05

0

0.05

0.1

0.15

0.2

%
 G

re
ed

y 
ov

er
 F

as
t G

re
ed

y

Greedy versus Fast Greedy
Exponential experiments

Figure ���

Additional results are shown in Table XXII� located in Appendix F� Figures ���

��� and �
 compare the performance of the Greedy to the Fast Greedy Algorithm

��



 

lohi hihi-con lohi-con
-0.01

0

0.01

0.02

0.03

0.04

0.05

%
 G

re
ed

y 
ov

er
 F

as
t G

re
ed

y

Greedy versus Fast Greedy
Truncated Gaussian experiments

Figure �
�

for the the Baseline� exponential� and truncated Gaussian experiments� We averaged

these run�times across all four sets of jobs� Figure �� shows that Greedy schedules

complete faster than Fast Greedy schedules for the High�Job� Low�Machine� Low�Job�

High�Machine� Low�Job� Low�Machine� and Low�Job� High�Machine� Consistent cat�

egories of heterogeneity� but that Fast Greedy schedules complete faster for High�Job�

High�Machine� and High�Job� High�Machine� Consistent categories of heterogeneity�

Figure �� shows that� for our experiments� when Greedy outperforms Fast Greedy� the

gain is never more than 	��� What this tells us is that the better schedule execution

time gained by using the O�mn�� Greedy Algorithm may not be worth the extra com�

putational e�ort� Depending upon the time required to develop a schedule with the

Greedy Algorithm� it may be more economical�� to use the Fast Greedy scheduling

algorithm� This thesis does not attempt to resolve that issue� as additional but related

research needs to be performed that examines the completion times of schedules built

using the two algorithms under many other di�erent categories of heterogeneity� The

question that needs to be answered is
 Does a minimum of 	�� decrease in schedule

��Economical from the standpoint of compute time required to build a schedule�

��



execution time warrant the use of a O�mn�� algorithm over a O�mn� algorithm!

�� Grouped Submissions versus Uniformly Distributed�
Sequential Submissions

Earlier in this chapter� we discussed the method we used throughout our sim�

ulation experiments to request jobs to be run by SmartNet in simulation mode� We

requested one of �ve di�erent jobs� one at a time� repeatedly� via a command �le�

for a total of either 	�� or ��� jobs� The jobs that were requested were chosen in�

dependently from a uniform distribution� so we call this method of choosing jobs the

Sequential Method� We also described another method of requesting jobs� which we

call the Grouped Method� Using the Grouped Method� jobs are requested in groups

via the command �le� Job� could be requested to run �� times� which would be equi�

valent to requesting Job� to run once� but list that request �� times in a row in the

command �le� During the course of our experiments� we became interested in know�

ing how schedules performed when jobs were requested with the Grouped Method as

compared to their being requested in a random order using the Sequential Method�

Speci�cally� we compared the performance of the Greedy Algorithm against the Fast

Greedy Algorithm� We also varied� in other ways� the order in which the grouped

jobs were requested in the command �le� as we thought that may make a di�erence�

We set up four command �les� discussed below� In all cases� each request was chosen

from the same group of � jobs�

� 	���up
 	�� jobs requested in increasing order job� through job�� �� repeti�
tions of each job�

� 	���down
 	�� jobs requested in decreasing order job� through job�� �� re�
petitions of each job�

� ����up
 ��� jobs requested in increasing order job� through job�� 	�� repeti�
tions of each job�

� ����down
 ��� jobs requested in decreasing order job� through job�� 	��
repetitions of each job�

��



Figure �� shows how much faster Greedy schedules executed than the Fast Greedy

schedules when using the Grouped Method of job requests� As before� a positive

percentage means that the Greedy schedule executes faster than the Fast Greedy

schedule�

hi
hi

hi
lo

lo
hi

lo
lo

hi
hi

-s
ca

la
b

lo
hi

-s
ca

la
b

-0.05

0

0.05

0.1

0.15

0.2

0.25

%
 G

re
ed

y 
ov

er
 F

as
t G

re
ed

y

Random (Baseline)
Grouped

Grouped versus Random Job Request
Greedy versus Fast Greedy

Figure ��� Greedy versus Fast Greedy� Grouped Method� This �gure shows how much
faster schedules built by the Greedy Algorithm �nish executing versus schedules built
by the Fast Greedy Algorithm� Positive values mean that the Greedy schedule is
executed faster than the Fast Greedy schedule�

The results shown in Figure XXIII show signi�cant di�erences between the

two job request methods� The Sequential Method has Fast Greedy schedules complet�

ing before Greedy schedules under High�Job� High�Machine Heterogeneity� however�

the Grouped method has Greedy schedule executing almost ��� faster than the Fast

Greedy schedule� We see a similar contradiction for High�Job� High�Machine� Con�

sistent�

Figure �	 shows that the performance of the Greedy Algorithmwas not a�ected

by the way that jobs were requested� For both the Grouped and Sequential methods�

Greedy performed about the same� Figure �� shows that the performance of the Fast

Greedy Algorithm was slightly a�ected by the order in which jobs were requested�

��



hi
hi

lo
hi

lo
lo

hi
hi

-c
on

lo
hi

-c
on

0

500

1000

1500

2000

R
un

-ti
m

e,
 s

ec
on

ds
grouped
sequential

Greedy Algorithm Performance
Grouped vs. Sequential Methods

Figure �	� Greedy Performance� Grouped and SequentialMethods� Greedy performed
about the same for both the Grouped and Sequential Methods�

	� Mixed Heterogeneity Matrices

Previously in this chapter we discussed the characteristics of High�Job� High�

machine Heterogeneity� We noted that the distribution of the variances of the columns

�machines� in the matrix was unimodal� and that the average variance for both rows

and columns was on the order of 	����

We �rst thought that the magnitude of the variance was a simple way to char�

acterize the category of heterogeneity� It turns out that this is not the best way to

measure heterogeneity� We consider Table VII� Table VII includes row and column

variances� The average row and column variance is on the order of 	���� If we use only

these variances� we might conclude that this matrix represented a High�Job� High�

Machine Heterogeneity matrix� However� the last �ve machines are all very similar�

and have a variance of �
��� In fact� the distribution the column variances is bimodal�

One mode is around �
��� while the other is on the order of 	���� What the matrix in

Figure VII represents is a High�Job� High�Machine Heterogeneity matrix combined

with a Low�Job� Low�Machine Heterogeneity matrix�

�




hi
hi

lo
hi

lo
lo

hi
hi

-c
on

lo
hi

-c
on

0

500

1000

1500

2000

R
un

-ti
m

e,
 s

ec
on

ds
grouped
sequential

Fast Greedy Algorithm Performance
Grouped vs. Sequential Methods

Figure ��� Fast Greedy Performance� Grouped and Sequential Methods� Fast Greedy
performed slightly worse for both the Grouped and Sequential Methods�

When we ran our Baseline experiments on the Mixed Heterogeneity matrix in

Table VII� we saw that both Greedy and Fast Greedy outperformed OLB and LBA

by at least an order of magnitude� Recall that when we ran our Baseline experiments

on our High�Job� High�Machine matrix� that Greedy and Fast Greedy performed

similarly to LBA� while outperforming OLB� Also� when we ran the Baseline experi�

ments on our Low�Job� Low�Machine Heterogeneity matrix� Greedy and Fast Greedy

performed similarly to OLB�

These results show that row and column variance of a matrix are not suit�

able statistical characterizations of the categories of heterogeneity� In this thesis� we

propose that the number of modes must also be considered� In this thesis� we primar�

ily concentrate on matrices where both the row and column variances have only a

single mode� Conclusions concerning other matrices� where either the row or column

variances have multiple modes is beyond the scope of this thesis�


�



Machine
Job 	 � � � �

	 mean 	������ 	� 	�� ����� ���
� mean �� 	��� 	��� �� �����
� mean 	��� �� 	
�� ������ ����
� mean ����� 
��	 �� ���� 	��
� mean �� 	���� 	������ 		��� 	�

variance 	��� � 	�� ���� � 	�	 ���� 	��� ���� � 	�� ���	 � 	�

Machine

Job � � � 
 	� variance

	 mean 		 	� 	� 	� 	� 	� �� � 	��
� mean �� �� �� �
 �� ��	
� 	�

� mean �� �� �� �� �� ��
�� 	��
� mean �	 �� �� �� �� 	���� 	�

� mean 	� 	� 	� 	
 �� 
�
� � 	���

variance �
�� �
�� �
�� �
�� �
��

Table VII� A Mixed Heterogeneity Matrix� The average row and column variance is
on the order of 	����

E� CONCLUSION

This chapter has presented a considerable amount of detailed information about

the experiments performed for this thesis� We explained the job distributions we chose

to implement� as well as why we chose them� We also explained how we categorized

heterogeneity� We presented our Baseline experiments and the results obtained� as well

as the results from simulations where the jobs ran for times other than the predicted

times� We examined how the Baseline results compared to the theoretical Best Case

Time� and compared the performance of SmartNet�s Greedy Algorithm to its Fast

Greedy Algorithm� both when the job submissions were grouped as well as when

they were individually submitted� We found that SmartNet embodies algorithms that

performed well in all cases and began work on determining which of SmartNet�s

schedulers should be used for each of the various categories of heterogeneity�


	




�



VI� SUMMARY AND FUTURE WORK

A� SUMMARY

This thesis examined the e�ect of exponential and truncated Gaussian run�time

distributions on the performance of SmartNet� In order to perform our experiments�

we �rst had to enhance the original SmartNet simulator so that simulated job run�

time durations could be non�deterministic� This non�deterministic behavior must be

dictated by the type of run�time distribution that a speci�c job is designated as having�

The result of this e�ort was a SmartNet simulator that behaves realistically within

the bounds of the run�time distribution parameters we speci�ed and implemented�

With our enhanced version of the SmartNet simulator� we were able to begin

our examination of SmartNet performance� We discovered early in our experiments

that we �rst had to determine the categories of heterogeneity that we wanted to exam�

ine� In addition� we needed a reference to which we could compare our results� These

were our Baseline tests� which were tests of SmartNet designed such that the run�

times did not di�er from expected time to complete �ETC� values� The Baseline tests

showed� for the speci�c categories of heterogeneity that were examined� the following

results�

� For High�Job� High�Machine Heterogeneity �Inconsistent�� SmartNet�sO�mn��
Greedy and O�mn� Fast Greedy scheduling algorithms performed comparable
to the LBA Algorithm� a slightly less complex algorithm than either Greedy
or Fast Greedy� Because of this similarity of performance� we determined that
further examination of Greedy and Fast Greedy scheduling algorithm perform�
ance was not needed for this category of heterogeneity�

� For High�Job� Low�Machine Heterogeneity �Inconsistent�� SmartNet�sO�mn��
Greedy and O�mn� Fast Greedy scheduling algorithms performed comparable
to the OLB Algorithm� which is also a less complex algorithm than either
Greedy or Fast Greedy� Additionally� OLB does not require the a priori in�
formation that is required by all of the Greedy algorithms �including Fast
Greedy� and the LBA algorithm� The overhead of the Greedy and Fast Greedy
scheduling algorithms is not warranted for this category of heterogeneity�


�



� For Low�Job� High�Machine Heterogeneity �Inconsistent�� SmartNet�sO�mn��
Greedy and O�mn� Fast Greedy scheduling algorithms performed signi�cantly
better than both OLB and LBA� We determined that further study of Greedy
and Fast Greedy performance was warranted for this category of heterogeneity�

� For Low�Job� Low�Machine Heterogeneity �Inconsistent�� SmartNet�s O�mn��
Greedy and O�mn� Fast Greedy scheduling algorithms performed comparable
once again to OLB� We determined that additional examination of Greedy
and Fast Greedy scheduling algorithm performance was unwarranted for this
category of heterogeneity�

� For High�Job� High�Machine Consistent Heterogeneity� SmartNet�s O�mn��
Greedy and O�mn� Fast Greedy scheduling algorithms once again performed
signi�cantly better than both OLB and LBA� We again determined that further
study of Greedy and Fast Greedy performance was warranted for this category
of heterogeneity�

� For Low�Job� High�Machine Consistent Heterogeneity� SmartNet�s O�mn��
Greedy and O�mn� Fast Greedy scheduling algorithms again performed signi�
�cantly better than both OLB and LBA� We again� therefore� determined that
further study of Greedy and Fast Greedy performance was warranted for this
category of heterogeneity�

With our focus on Low�Job� High�Machine Heterogeneity� High�Job� High�Machine

Consistent Heterogeneity� and Low�Job� High�Machine Consistent Heterogeneity� we

began our experiments comparing the performance of the various SmartNet scheduling

algorithms when jobs did not run for the length of time predicted� First� we examined

the performance of SmartNet when the distribution underlying all jobs executed was

exponential� The tests showed that the schedules built by the best SmartNet al�

gorithms were still much better than those built by the less complex� non�intelligent

SmartNet algorithms� Not only does this show that re�scheduling is often not needed

after the initial schedule has been somewhat violated� but also that the overhead in�

volved in using SmartNet�s more intelligent algorithms is warranted even when the

run�times of jobs can be signi�cantly di�erent from their predicted run�times�

We next examined the performance of SmartNet when the distribution underly�

ing all jobs executed was a truncated Gaussian run�time distribution� The ETC values

of the jobs were used as the mean� and truncation occurred to the left at mean� ��


�



V ariance for these tests was ���� of the mean� Our results show that SmartNet

performance was somewhat a�ected by jobs whose run�times were from a truncated

Gaussian run�time distribution� We saw up to a ��� increase in the time required to

execute a schedule� Though much of this apparent decrease in performance was an

artifact of our truncation method� some amount of it appears unaccounted for� This

suggests that it may be necessary to recalculate a schedule for jobs that are still wait�

ing to be executed when we have jobs with this run�time behavior� The relatively low

cost of rescheduling may help minimize any resulting decrease in performance low� In

this case� also� we see that the overhead involved in using SmartNet�s more intelligent

algorithms is warranted even when the actual run�times of jobs can be signi�cantly

di�erent from their predicted run�times�

As we performed our experiments� we came across other related areas of Smart�

Net performance that we were able to examine� First� we looked at the theoretical

minimum execution time of a schedule and compared that theoretical minimum to

the performance of the four scheduling algorithms we tested� Our results showed that

SmartNet�s algorithms often approach the theoretical limits when running tests with

our High�Job� Low�Machine� and Low�Job� Low�Machine categories of heterogeneity�

In all other cases� the algorithms performed at least 	��� worse than the theoretical

minimum� We therefore conclude that� for our test environment� SmartNet was able

to build near optimal schedules when the variation in performance of jobs on machines

was low�

Next� we compared the performance of SmartNet�sO�mn�� Greedy and O�mn�

Fast Greedy scheduling algorithms� We determined that the schedules built with the

Greedy algorithm executed faster than those built with Fast Greedy for High�Job�

Low�Machine Heterogeneity� Low�Job� High�Machine Heterogeneity� Low�Job� Low�

Machine Heterogeneity� and Low�Job� High�Machine Consistent Heterogeneity� The

performance gain was never more than 	��� however� when jobs were submitted in

a random order� For all other categories of heterogeneity� schedules built by the


�



Fast Greedy scheduling algorithm completed faster than those built with Greedy� We

determined that the cost to schedule with the more complex Greedy algorithm may

not always outweigh the performance gain� and that such considerations needed to be

further examined in future research�

We then compared the performance of SmartNet�s intelligent schedulers when

jobs were requested sequentially and randomly� which we called the SequentialMethod�

against the Grouped Method� Our results showed signi�cant di�erences in the per�

formance of the Greedy and Fast Greedy scheduling algorithms when these two meth�

ods were used� We conclude that there is a need for both methods to be used within

SmartNet� but that they need to be used appropriately� Further� the di�erences in

performance between these two job request methods needs to be accounted for when

deciding which scheduling algorithm to use�

Lastly� we examined a Mixed Heterogeneity Matrix� While both the average

row and column variance was on the order of 	���� and so might have appeared to be

a High�Job� High�Machine Heterogeneity matrix� a closer look at the distributions of

the row and column variances showed us this matrix was very di�erent� The distri�

bution of the row and column variances for our �rst matrix was uni�modal� which we

concluded was characteristic of the High�Job� High�Machine category of heterogeneity�

However� the distribution of the column variances of the second matrix was bi�modal�

We concluded that the existence of more than one mode meant that a matrix was

actually a combination of two di�erent matrices corresponding to two categories of

heterogeneity � in this case� a High�Job� High�Machine matrix and a Low�Job� Low�

Machine matrix� When we compared the results of the Baseline experiment for the

Mixed Heterogeneity Matrix with our High�Job� High�Machine Heterogeneity matrix�

we saw signi�cant di�erences in the performance of the Greedy and Fast Greedy al�

gorithms� These results helped us determine that categories of heterogeneity could not

be statistically categorized by average row and column variance� but that additional

statistical study was needed�


�



Overall� we determined that SmartNet�s algorithms perform well under the

categories of heterogeneity we identi�ed� and that additional research is needed to

further pinpoint ways to increase performance in the many di�erent computing and

network environments likely to be found in the Department of Defense�

B� FUTURE WORK

There are numerous opportunities for future work related to this thesis� First�

SmartNet performance needs to be further evaluated using additional matrices from

the categories of heterogeneity that we identi�ed as well as with additional examples

of matrices with Mixed Heterogeneity� Additionally� the categories of heterogeneity

most often found in typical environments needs to be further researched� SmartNet

performance needs to be further examined when the jobs� run�time distributions are

di�erent from the ones that we simulated� This creates a need for more study into what

types of distributions we should expect to �nd in various high performance computing

environments� Further� SmartNet performance should be evaluated when di�erent

jobs execute with di�erent types of run�time distributions� The cost�e�ectiveness of

SmartNet�s O�mn�� Greedy and O�mn� Fast Greedy scheduling algorithms needs to

be traded o� against their performance� and the cost and bene�ts of rescheduling

should also remain a consideration�


�




�



APPENDIX A� SMARTNET DATABASE

FORMAT

Tables VIII� IX� X� and XI outline the format of the SmartNet database� They

include �elds added because of research performed in this thesis�

Site Object Fields Format

site name search key string
description string
latitiude �oat� global coordinate
longitude �oat� global coordinate
bandwidth �oat� in bytes�second �within site�
latency �oat� in seconds �within site�
notional integer� 	 or � �true or false�
status integer �unused at this time�

Table VIII� Site Object Database Format

Machine Object Fields Format

machine name search key string
architecture string �unused at this time�
IP address standard internet dot notation
description string
location string

relative cost �oat �unused at this time�
relative performance rate �oat �unused at this time�
Is the machine notional! integer� 	 or � �true or false�

site name string

Table IX� Machine Object Database Format







Model Object Field Format

model name search key string
description string
idempotent integer� 	 or � �true of false�

The number of compute characteristic
description lines integer

compute characteristic�s descriptions�
one line per description string

Table X� Model Object Database Format

Model�Machine Object Fields Format

machine name search key string
model name search key string
group name search key string

distribution type string �ARMSTRONG ADDED�

�rst moment �oat �ARMSTRONG ADDED�

second monent �oat �ARMSTRONG ADDED�

third moment �oat �ARMSTRONG ADDED�

theoretical compute function equation� producing seconds
theoretical network function equation� producing seconds
theoretical data use function equation� producing bytes

theoretical �oating�point function equation� producing M�ops
relative execution rate �oat �unused at this time�
experiential compute data written to database by smartnet

The number of compute
characteristic description lines integer

compute characteristic�s descriptions�
one line per description string
experiential network data written to database by smartnet

Table XI� Model�Machine Object Database Format

	��



APPENDIX B� ENHANCEMENTS MADE TO

EXISTING SMARTNET CODE

�� INTRODUCTION

This appendix provides detailed explanations of the changes made to several

SmartNet �les� The changes were made in order to enhance the SmartNet simulator�

Chapter IV provides an explanation as to why these changes were required�

�� SERVER
SIMULATOR
JOBSTARTEVENT�CC

This �le details the member functions of the JobStartEvent class� There are

only two functions to this class
 a constructor� and the function execute�
� The

execute�
 function does several things� but only one thing that we are interested in

changing� The duration that a job is to run in simulation mode was retrieved from

the ETC information provided in the input database� This is where the crux of the

problem with the simulator lay� The duration retrieved is the exactly the same as the

ETC value that the schedule was built from� The function call was


� job duration � ETC of job provided in database

We changed the above call to


� job duration � run�time of job calculated from distribution data

The distribution data is provided in the database �le �another change�� The function

required to calculate the job run�time� based upon this distribution information� is an

addition to the SmartNet simulator code�

	�	



�� SERVER
SN�LOG
SN�LOG�C

This �le is the program code for the SmartNet logger� which listens to various

SmartNet messages and logs speci�c detail to an output �le� This output log �le can

then be used to recreate SmartNet runs using the SmartNet replay mechanism� In

the case of the SmartNet simulator� the logger is used to capture run�time and for

scheduling information for later evaluation of SmartNet�s performance and behavior�

There were minor enhancements made to this �le� but they were important�

We found that the code was not outputting the correct time for the duration that a job

was running in simulation mode� The same was true for the times recorded for jobs to

begin� This stemmed from the use of the ETC value for both scheduling and running

jobs in simulation mode� The changes made involved altering variable accesses in the

following functions


� JobNoticeStart
 access true start time versus time variable t

� JobUpdateDone
 report true �nish time�duration vice time variable t

	��



	� SN�SUBMIT
EXTERNAL�C

This �le contains external interface code speci�c to the sn�submit program� The

sn�submit program must be run to actually submit jobs to SmartNet via command

line� Command line submission must be used in simulation mode� because SmartNet�s

graphical user interface does not support simulation mode�

While investigating necessary changes to the SmartNet code� it became evident

that sn�submit was trying to actually start the schedule on the prescribed machines�

This needed to be �xed in order for the simulator to actually be a simulation tool�

We �xed this problem by checking to see whether simulation mode had been set when

smartnet�master was started� The check for simulation mode was performed in the

sn external start�
 function� and was performed as follows


� If simulation mode is set� return true�

The change allowed sn�submit to run in simulation mode without attempting to actu�

ally start the schedule�

	��



�� SN�SUBMIT
SUBMIT�C

After examining and changing the sn�submit�external�C �le� it became evident

that we needed to be able to start sn�submit in simulation mode� The �le submit�C

contains the main program for the sn�submit application� We needed to add simula�

tion functionality at the command line� Simulation functionality included being able

to use ���S�� as a command line argument to sn�submit� It also included setting

the simulation mode global variable to true� We added the equivalent of the following

pseudo�code�

� Global Integer Variable simulationMode � false�

� If sn�submit includes �S as a command line argument�

� Set simulationMode to true�

� Remove �S from the input argument list�

	��



�� SN�SUBMIT
README

This �le includes detailed information on how to run sn�submit� We changed

the README �le to include information about the ���S�� �ag� thus informing the

user how to run sn�submit in simulation mode�

	��




� SERVER
SRC
MODELMACHINE�H

This is the header �le for the ModelMachine class� The ModelMachine class

handles all of the characteristics of individual job�machine pairs� Much of the data is

provided via the input database �le� The format of the database �le is included in

Appendix A�

Runtime distribution information is necessary for each individualmodel�machine

pair� In order for the user to specify this information �for experimental purposes��

the run�time distribution information had to be read into SmartNet with the model�

machine data� That meant altering the database �le format to account for the run�time

distribution data� Altering the database �le format meant having to provide variables

to hold the run�time distribution data� along with the functions necessary to retrieve

and manipulate those variables� All of the run�time distribution variables and func�

tions are �rst seen in ModelMachine�h� The changes made to this �le are discussed

below�

Because we referenced speci�c distribution function information� the distribu�

tion�h header �le� written for this research and discussed later in this chapter� had to

be included� We then added the class data members to hold the run�time distribution

information� These data members were� of course� private� They include


� Distribution
 an Mstring type

� Moment �
 a �oat to hold the mean� or �rst moment

� Moment �
 a �oat to hold the second moment

� Moment �
 a �oat to hold the third moment

Public data member accessor functions were then declared� These functions include


� getDistribution�

 returns Distribution

� getMoment ��

 returns Moment �

� getMoment ��

 returns Moment �

� getMoment ��

 returns Moment �

	��



The above member function de�nitions were included as inline functions listed after

the class de�nition� They are simple accessor functions that return the value of the

individual data members�

A method had to be written that would allow a run�time duration to be gen�

erated based upon the new run�time distribution data members� By including it in

the ModelMachine class� we had easy access to the necessary data� Also� when the

actual duration is requested �see server�simulator�JobStartEvent�cc above� it

is accessed via a reference to a ModelMachine type� We added the public member

function getRuntime�
 to provide calculation of the run�time duration�

	��



�� SERVER
SRC
MODELMACHINE�CC

This �le contains member functions of the ModelMachine class� The class is

de�ned in ModelMachine�h� discussed previously� Additions made to ModelMachine�cc

include the following�

	� ModelMachine��init�

 Added initialization of run�time distribution data
members


� Distribution � � �
� Moment 	 � ����
� Moment � � ����
� Moment � � ����

�� ModelMachine��operator��ModelMachine �mm

 Added assignment overload�
ing for run�time distribution data members


� Distribution � mm�Distribution
� Moment 	 � mm�Moment 	
� Moment � � mm�Moment �
� Moment � � mm�Moment �

�� ModelMachine��getRuntime�

 This function was added to allow for the com�
putation of the run�time duration� It returns duration� a DeltaTime type� The
functions generate normal�
 and generate exponential were written for
this research� They are de�ned in the �le distribution�h� which is included
in this �le and discussed later in Appendix C� Here is the pseudo�code�

� If Distribution is equal to �normal�
� duration � generate normal�Moment 	� Moment ��

� Else If Distribution is equal to �exponential�
� duration � generate exponential�Moment 	�

� return duration

�� ModelMachine��read�

 This function needed to be altered to allow for the
run�time distribution information to be read in from the database �le�

	��



APPENDIX C� ADDITIONAL CODE FOR THE

SMARTNET SIMULATOR

�� INTRODUCTION

The following subsections contain detailed information about the code we wrote

speci�cally for improving the SmartNet simulator� Each explanation is followed by

the actual code added to the SmartNet simulator�

�� SERVER
ARMSTRONG
MAKEFILE

The �les that were written needed to be compiled with the SmartNet package�

This meant creating a Make�le consistent with the Make�le structure resident in the

SmartNet code� This �le allows for all of the �les below to be compiled whenever the

server is recompiled� Here is the code
 Make�le

� Makefile for Armstrong�s Thesis Code

� Used to generate Random Variates for

� use by the SmartNet simulator

� �last mod� �
����


� Note that comments start with � for this file

� which compiler to use

CC � g��

�CC � CC

� Directory location of include files

�INCS � �I�L�local�lang�SC�����

INCS �

CFLAGS � ��INCS
 �g

� What libraries need to be linked

�LIBS � �lm

LIBS �

� Project name to be compiled

PROGS �

	�




� What object files are to be used

OBJS � distribution�o random�generator�o myrand�o

�SUFFIXES� �c �cc �o

�c�o�� cc ��CFLAGS
 �c ���c

�cc�o�� ��CC
 ��CFLAGS
 �c ���cc

� What is to be compiled

�all � ��PROGS


all � ��OBJS


� The main object file

�mytest� ��OBJS


� ��CC
 �o mytest ��OBJS
 ��CFLAGS
 ��LIBS


� Note �� there is a tab before the ��CC
 above

� What are the objects are dependent on

�main�o� main�cc proj��h

�proj��o� proj��cc proj��h

�main�o� main�cc myrand�h random�generator�h distribution�h

distribution�o� distribution�cc myrand�h random�generator�h

random�generator�o� random�generator�cc random�generator�h

myrand�o� myrand�cc myrand�h

� This cleans out everything except the Makefile�

� AAAREADME and source files

clean�� rm �f ��PROGS
 ��o core

		�



�� SERVER
ARMSTRONG
MYRAND�H�MYRAND�CC

The myrand �les de�ne a function that uniformly generates random numbers

between � and 	� The uniform� randomly generated� number is used by later functions

to access an array of 	�� seeds that will assure high periodic randomization of numbers

in another uniform random number generator� The pseudo�code of the myrand�


function follows�

� static int check � false

� Use system time to seed the system random number generator

� If check is false

� static tester � time�NULL�

� check � true

� Seed the system random number generator with tester

� ix � system random number generator output

� answer � ix��max random number capable of being generated�

� tester � ix

� return answer

The concept is for time to be used to �rst seed the random number generator� All

subsequent calls to this function will use the previously generated variable as the seed

because its location is kept intact via the static type� The reason the static typing

was done is because there could possibly be several accesses of the myrand�
 function

within a single second� Always using time for the seed would cause the same seed to

be used for several myrand�
 calls� Here is the code
 myrand�h

�� File� myrand�h

�� Bob Armstrong

�� �� March ���


�� This function randomly generates numbers between

�� � and �

			



�include �iostream�h�

�include �stdlib�h�

�include �math�h�

�include �time�h�

typedef int bobint�

float myrand�
�

myrand�cc

�� File� myrand�cc

�� Bob Armstrong

�� �� March ���


�� This function uniformly generates random numbers between

�� � and �

�include �myrand�h�

�include �debug�Debug�h�

float myrand�


 

long double ix�

static long int tester�

static bobint check � ��

�� I am seeding the random function with the time

srand��int
time�NULL

�

if �!check
  

tester � time�NULL
�

��tester � �	
�
����� �� used to provide data consistency in testing

check � ��

if�Debug��check��a��

 

Debug��out�
 �� �Initial seed �time
�"t� �� tester �� endl��

#

#

srand��unsigned int
tester
�

ix � rand�
� �� make this the next time seed�

float answer � ix��RAND�MAX
�

tester � �long int
ix�

		�



if�Debug��check��a��

 

Debug��out�
 �� �Output of myrand�"t��� answer �� endl�

#

return answer�

#

		�



	� SERVER
ARMSTRONG
DISTRIBUTION�H� DISTRI�
BUTION�CC

The distribution �les include most of the functions needed to generate the

various run�time distributions� Functions include normal ���
� generate normal�
�

and generate exponential�
�

The function normal ���
 uses the polar method for generating normal����


random variates� It has no parameters� but returns a single normally distributed

random variate� This function is used by the generate normal�
 function to generate

Gaussian data based upon the �rst and second moments�

� While WW is greater than 	��

� uniform random number 	 is a Uniform���	� random number

� uniform random number � is a Uniform���	� random number

� V 	 � � uniform random number 	 � 	
� V � � � uniform random number � � 	
� WW � V 	�  V ��

� End While

� Y Y �
q

�� log�WW �
WW

� random variate 	 � Y Y V 	

� random variate � � Y Y V �

� Return either random variate 	 or random variate �

The generate exponential�
 function receives the �rst moment and returns

a run�time duration� As explained in Chapter III� the Inverse Transform method

is used to generate these exponentially distributed variates� because the exponential

function� and its inverse� have a closed form�

� De�ne EXPONENTIAL RUNTIME

� While duration is less than or equal to ���

� seed � 

 myrand��

		�



� random number � random generator�seed�

� If �rst moment is greater than the EXPONENTIAL RUNTIME

� adjusted � first moment� EXPONENTIAL RUNTIME

� duration � �EXPONENTIAL RUNTIME log�random number�

� duration � duration adjusted

� Else

� duration � �first moment log�random number�

� End If�Else

� End While
� Return duration

In this function� the constant EXPONENTIAL RUNTIME is a mean gathered

via experiments with the NAS Benchmarks which is applied to the �rst moment data

speci�c to the machine�job pair� It is discussed in greater detail in Chapter V�

The generate normal�
 function receives the �rst and second moment as its

parameters and returns a run�time duration� This function calls the normal ���
 func�

tion� which generated IID N���	� random variates� Implementation of the normal ���


function is simple� as shown in the following pseudo�code�

� XX � normal �	��

� duration � ���  first moment �XX
p
second moment�

� Return duration

The ��� is added to the duration computation to account for rounding errors� This

function can be changed to generate truncated normal data by only allowing the

duration to be returned if it falls within some limit imposed in the code� That limit

may either be hard coded� or it may be dependent upon a constant relationship

between the �rst and second moments� which is probably more realistic� The use

of truncated Gaussian is discussed further in Chapter V� The code for these function

is included below� distribution�h

�� File� distribution�h

		�



�� Bob Armstrong

�� � August ���


�� Thesis code

�� This code determines which type of distribution

�� the model�machine object carries with it and

�� generates a run�time based upon that distribution�

�include �math�h�

�include �string�h�

�include �myrand�h�

�include �random�generator�h�

�include ��users�work��rkarmstr�SOLARIS�src�sn�lib�spi�DeltaTime�h�

double normal����
�

DeltaTime generate�normal�float� float
�

DeltaTime generate�exponential�float
�

distribution�cc

�� File� distribution�cc

�� Bob Armstrong

�� � August ���


�� Thesis code

�� This code determines which type of distribution

�� the model�machine object carries with it and

�� generates a run�time based upon that distribution�

�include �distribution�h�

�include �debug�Debug�h�

�� This is the polar method of generating normal

random variates� discussed in Law and Kelton

�Simulation Modeling and Analysis�� pp ��� � ����

��

double normal����


 

double random�variate�

double v�� v�� yy� ww � ����

int seed�

float random�number��� random�number���

		�



while�ww � ���
  

seed � int��� � myrand�

�

if�Debug��check��a��

 

Debug��out�
 �� �Seed in normal����
�"t��� seed �� endl�

#

random�number�� � random�generator�seed
�

random�number�� � random�generator�seed
�

v� � � � random�number�� � ��

v� � � � random�number�� � ��

ww � v� � v� � v� � v��

#

yy � sqrt� ��� � log�ww

 � ww
�

�� Decide which value to return

if�myrand�
 � ���
  

random�variate � v� � yy�

#

else  

random�variate � v� � yy�

#

if�Debug��check��a��

 

Debug��out�
 �� �Random Variate produced by normal����
�"t�

�� random�variate �� endl�

#

return random�variate�

#

DeltaTime generate�normal�float moment��� float moment��


 

DeltaTime duration�

double xx�

int checker � ��

		�



double sigma � sqrt��double
moment��
�

if�moment�� �� ���
  

duration � moment���

#

else  

while�checker �� �
  

xx � normal����
�

duration � ���� � moment�� � sigma � xx
�

if��duration � ���
 �� �duration �� moment�� � sigma

  

checker � ��

#

# �� end while

# �� end else

return duration�

#

DeltaTime generate�exponential�float moment��


 

int seed� �� holds seed for random�generator

DeltaTime duration � ����� �� returned variable

float adjusted� �� moment�� adjusted for EXP�RUNTIME

float random�number� �� holds random�generator�
 value

const float EXP�RUNTIME � ���� �� exponential mean� CHANGE THIS

�� to adjust exponential characteristics�

�� Only return a runtime duration � ��

�� Everything takes SOME time to run!

while�duration �� �
 

�� Get seed and generate random number

seed � int��� � myrand�

�

random�number � random�generator�seed
�

		�



�� If moment�� is greater than the runtime value�

�� subtract moment�� and compute the duration from

if�moment�� � EXP�RUNTIME
  

adjusted � moment�� � EXP�RUNTIME�

duration � �int
�� EXP�RUNTIME � log�random�number

�

duration �� �DeltaTime
adjusted�

# else  

duration � �int
�� moment�� � log�random�number

�

#

# �� end while

return duration�

#

		




�� SERVER
ARMSTRONG
RANDOM GENERATOR�H�
RANDOM GENERATOR�CC

This �le contains the functions necessary to generate uniformly distributed IID

U���	� random variates� This function is needed by the normal ���
� generate normal�
�

and generate exponential�
 functions found in the distribution �les� As has been

previously discussed� a good source of IID U���	� random variables is essential to

the success of any random generator� The following code can be found written in

�Simulation Modeling and Analysis�� by Law and Kelton� �Ref� 	�� pages �������� It

is also included below� random�generator�h

�� The following � declarations are for use of the random�number

generator rand and the associated functions randst and reandgt for

seed management� This file �named random�generator�c
 should be

included in any program using these functions by executing

�include �random�generator�h�

before referencing the functions�

��

float random�generator�int stream
�

void randst�long zset� int stream
�

long randgt�int stream
�

random�generator�cc

�� File� random�generator�cc

UNIFORM ����
 RANDOM NUMBER GENERATOR

Stolen by� Bob Armstrong from �Simulation

Modeling and Analysis�� by Law and Kelton ��

�� Prime modulus multiplicative linear congruential generator Z�i� �

�	���	���	 � Z�i���
 �mod pow��� ��
 � �

� based upon Marse and

Roberts� portable FORTRAN random�number generator UNIRAN� Multiple

����
 streams are supported� with seess spaced ������� apart�

Throughout� input argument �stream� must be an int giving the

desired stream input number� The header file random�generator�h

must be included in the calling program ��include

�random�generator�h�
 before using these functions�

	��



Usage� �three functions


�� To obtain the next U����
 random number from stream �stream��

execute u � random�generator�stream
�

where rand is a float function� The float variable u will contain the next

random number�

�� To set the seed for stream �stream�� to a desired value zset�

execute randst�zset� stream
�

where randst is a void function and zset must be a long set to

the desired seed� a number between � and ���
���	�	 �inclusive
�

Default seeds for all ��� streams are given in the code�

�� To get the current �most recently used
 integer in the sequence being

generated for stream �stream� into the long variable zget�

execute zget � randgt�stream
�

where randgt is a long function� ��

�include �iostream�h�

�include �debug�Debug�h�

�� Define the constants� ��

�define MODLUS ���
���	�


�define MULT� �����

�define MULT� �	���

�� Set the default seeds for all ��� streams� ��

static long zrng�� �

 ��

��
��
����� ���	��

�� ����	�
�� ����	������ ���	
������ �����
	����

����		���� ��	
������ ��	�

��
	� 	��������� ����������� �����������

����	��	�� ���������� ���
������ 
�����
�� ��	��
����� ��������
��

�����
���� ������	���� 
�	�
����� ���������� ���������� �����������


	����	�	� ��������
�� ������	���� 
	�
�		�� ���	����
� 
�	�			���

��	��
���� ����	������ �����	����� ���

����� �


������ ���	�
�����

	�������� �����	
���� 
�������	� 	������	�� �����
����� 	��	������

�

���	���� �������	��� ��
�����
�� 
�������� ���

	
��� ���
�	
�
��

���������
� �	���
����� ���
������� ���������� ��������
�� ������

��

���	������ �������

�� 

�	�	�	�� �������
�� �
��
��

� ����	���	��

����	
���� ���

������ �����
���� ��
���
�
� �������
��� ������	�
	�

��	������� �		����	��� ������
��� 	

����
� ��������
�� 	��	������

	�	



���������� ���������� �
	���	��� ���	
���
�� �

���	
�� ��		�������

��������
�� ���	����	�� �������
��� 
�	�	����� �
��������� ����		


��

����������� ����
������ �������	��� ���
��
���� ���
��
��� �������
���

���	��
��� �	��������� �	���
	�
� 	�������� �����
����� ��

���	��

�	�������� �����
	���� 	��������� ��
�
���
 #�

�� Generate the next random number� ��

float random�generator�int stream


 

long zi� lowprd� hi���

if�Debug��check��a	�

 

Debug��out�
 �� �Seed into random�generator�"t� �� zrng�stream� �� endl�

#

zi � zrng�stream��

lowprd � �zi � 	����
 � MULT��

hi�� � �zi �� �	
 � MULT� � �lowprd �� �	
�

zi � ��lowprd � 	����
 � MODLUS
 � ��hi�� � ��
	

 �� �	
 � �hi�� �� ��
�

if�zi � �
  

zi �� MODLUS�

#

lowprd � �zi �	����
 � MULT��

hi�� � �zi �� �	
 � MULT� � �lowprd �� �	
�

zi � ��lowprd � 	����
 � MODLUS
 � ��hi�� � ��
	

 �� �	
 � �hi�� �� ��
�

if�zi � �
  

zi �� MODLUS�

#

zrng�stream� � zi�

if�Debug��check��a��

 

Debug��out�
 �� �Output from random�generator�"t�

�� ��zi �� 
 $ �
 � �
��	


��	�� �� endl�

#

return ��zi �� 
 $ �
 � �
��	


��	���

#

�� Set the current zrng for stream �stream� to zset� ��

void randst �long zset� int stream


 

	��



zrng�stream� � zset�

#

�� Return the current zrng for stream �stream� ��

long randgt�int stream


 

return zrng�stream��

#

	��



	��



APPENDIX D� CODE FOR RUNTIME

DISTRIBUTION TESTS

�� CODE FOR COUNTING SORT

The following code is my implementation of the NAS Integer Sort Benchmark�

It is written to be run on an SGI machine with four processors� The sorting algorithm

used is a parallel version of the counting sort� The code also includes a non�parallel

version of counting sort� which was run to provide a comparison for speedup�

��������������������������������������������������������������

File� parallel��c

Name� Bob Armstrong

Purpose� This file contains functions executed in the main

procedure that measurement of the counting sort

executed in sequence on one processor� in sequence

forked to one processor� and in parallel forked

to four processors� The code is written for the

SGI Challenge L� Measurements are taken and output

to three files �one for each treatment
 for each of

ten runs of the sort�

The code is not to the NPS style guide �sue me
�

��������������������������������������������������������������

�include �stdlib�h�

�include �stdio�h�

�include �ulocks�h�

�include �unistd�h�

�include �stddef�h�

�include �sys�types�h�

�include �fcntl�h�

�include �sys�mman�h�

�include �sys�syssgi�h�

�define TOTAL�KEYS�LOG�� ��

�define MAX�KEY�LOG�� ��

�define TOTAL�KEYS �� �� TOTAL�KEYS�LOG��


�define MAX�KEY �� �� MAX�KEY�LOG��


	��



�define CYCLE�COUNTER�IS�	�BIT �

�if CYCLE�COUNTER�IS�	�BIT

typedef unsigned long long iotimer�t�

�else

typedef unsigned int iotimer�t�

�endif

�� These are globals to make the arrays� which are accessed

randomly� available to all functions� This decreases

the time spent passing pointers�

��

int key�array�TOTAL�KEYS��

int work�array�MAX�KEY��

int final�array�TOTAL�KEYS��

�� This is the LOCK stuff� ��

usptr�t� handle � NULL�

ulock�t lock�array�MAX�KEY��

�� These are globals to hold the values in work�array

after the tallys are done in parallel� They

need to be globals because I can only pass 	 parameters

in the m�fork call�

��

int data� � ��

int data� � ��

int data� � ��

�� This is Pedro Tsai�s way cool precision timer for SGI machines�

It was originally written in C��� With MINOR changes� it is

included here to compile as C code� The units returned by the

gethrtimer�
 function are picoseconds� Thanks� Pedro!

��

unsigned int cycleval�

volatile iotimer�t �iotimer�addr�

static int initflag���

volatile iotimer�t� initSysTimer�


 

	��



��psunsigned�t phys�addr� raddr�

int fd� poffmask�

if � initflag��� 


 

poffmask � getpagesize�
 � ��

phys�addr � syssgi�SGI�QUERY�CYCLECNTR� �cycleval
�

raddr � phys�addr � %poffmask�

fd � open���dev�mmem�� O�RDONLY
�

iotimer�addr � �volatile iotimer�t �
mmap��� poffmask� PROT�READ�

MAP�PRIVATE� fd� �off�t
raddr
�

iotimer�addr � �iotimer�t �
����psunsigned�t
iotimer�addr �

�phys�addr � poffmask

�

initflag���

#

return iotimer�addr�

#

�� get the hardware counter value ��

long long gethrtime�


 

volatile iotimer�t �timer�addr�

long long counter�value�

�� Initialize the hardware time counter ��

timer�addr�initSysTimer�
�

counter�value��timer�addr�

return counter�value�

#

��

� FUNCTION RANDLC �X� A


�

� This routine returns a uniform pseudorandom double precision number in the

� range ��� �
 by using the linear congruential generator

�

	��



� x� k��# � a x�k �mod �&�	


�

� where � � x�k � �&�	 and � � a � �&�	� This scheme generates �&�� numbers

� before repeating� The argument A is the same as �a� in the above formula�

� and X is the same as x��� A and X must be odd double precision integers

� in the range ��� �&�	
� The returned value RANDLC is normalized to be

� between � and �� i�e� RANDLC � �&���	
 � x��� X is updated to contain

� the new seed x��� so that subsequent calls to RANDLC using the same

� arguments will generate a continuous sequence�

�

� This routine should produce the same results on any computer with at least

� �� mantissa bits in double precision floating point data� On Cray systems�

� double precision should be disabled�

�

� David H� Bailey October �	� ����

�

� IMPLICIT DOUBLE PRECISION �A�H� O�Z


� SAVE KS� R��� R�	� T��� T�	

� DATA KS���

�

� If this is the first call to RANDLC� compute R�� � � & ���� R�	 � � & ��	�

� T�� � � & ��� and T�	 � � & �	� These are computed in loops� rather than

� by merely using the �� operator� in order to insure that the results are

� exact on all systems� This code assumes that ���D� is represented exactly�

��

�������������������������������������������������������������������

�������������� R A N D L C �������������

�������������� �������������

�������������� portable random number generator �������������

�������������������������������������������������������������������

double randlc�X� A


double �X�

double �A�

 

static int KS�

static double R��� R�	� T��� T�	�

double T�� T�� T�� T��

double A��

double A��

	��



double X��

double X��

double Z�

int i� j�

if �KS �� �


 

R�� � ����

R�	 � ����

T�� � ����

T�	 � ����

for �i��� i����� i��


 

R�� � ���� � R���

T�� � ��� � T���

#

for �i��� i���	� i��


 

R�	 � ���� � R�	�

T�	 � ��� � T�	�

#

KS � ��

#

�� Break A into two parts such that A � �&�� � A� � A� and set X � N� ��

T� � R�� � �A�

j � T��

A� � j�

A� � �A � T�� � A��

�� Break X into two parts such that X � �&�� � X� � X�� compute

Z � A� � X� � A� � X� �mod �&��
� and then

X � �&�� � Z � A� � X� �mod �&�	
� ��

T� � R�� � �X�

j � T��

X� � j�

X� � �X � T�� � X��

T� � A� � X� � A� � X��

	�




j � R�� � T��

T� � j�

Z � T� � T�� � T��

T� � T�� � Z � A� � X��

j � R�	 � T��

T� � j�

�X � T� � T�	 � T��

return�R�	 � �X
�

#

�� end randlc�x�a
 ��

�������������������������������������������������������������������

�������������� C R E A T E � S E Q �������������

�������������������������������������������������������������������

�� This function creates the sequence of keys that will be sorted

by calling the random number generator previously explained

in this file� It is stored in key�array�

��

void create�seq� double seed� double a 


 

double x�

int i� j� k�

k � MAX�KEY���

for �i��� i�TOTAL�KEYS� i��


 

x � randlc��seed� �a
�

x �� randlc��seed� �a
�

x �� randlc��seed� �a
�

x �� randlc��seed� �a
�

key�array�i� � k�x�

#

#

�������������������������������������������������������������������

��������������������� COUNTING�SORT �������������������������������

�������������������������������������������������������������������

�� This function is used to fill the final�array with the sorted keys�

	��



It is not the entire counting sort algorithm�

��

void counting�sort�begin� end� div�� div�� div�


int begin�

int end�

int div��

int div��

int div��

 

int ix� aa�

for�ix � end�� � ix � begin � �� ix��
  

aa � key�array�ix��

final�array�work�array�aa���� � aa�

work�array�aa����

#

return�

#

�������������������������������������������������������������������

��������������������������� DO�SORT �������������������������������

�������������������������������������������������������������������

�� This function� like counting�sort above� only fills the final�array

with the sorted keys� It is a function meant to be called with

the m�fork�
 function call specific to SGI machines�

��

void do�sort�div�� div�� div�� dd�� dd�� dd�


int div��

int div��

int div��

int dd��

int dd��

int dd��

 

int ix� iy� iw� iz� aa� ab� ac� ad�

wa� wb� wc� wd�

ulock�t� ba�� bb�� bc�� bd�

if�m�get�myid�
 �� �
  

for�ix � div��� � ix � ��� ix��
  

aa � key�array�ix��

	�	



while�ustestlock�lock�array�aa�

  

#

ussetlock�lock�array�aa�
�

wa � work�array�aa��

if�aa � dd�
  

final�array�wa��� � aa�

#else if�aa � dd�
  

final�array�wa � data� � �� � aa�

#else if�aa � dd�
  

final�array�wa � data� � data� � �� � aa�

#else  

final�array�wa � data� � data� � data� � �� � aa�

#

work�array�aa����

usunsetlock�lock�array�aa�
�

#

#else if�m�get�myid�
 �� �
  

for�iy � div��� � iy � div���� iy��
  

ab � key�array�iy��

while�ustestlock�lock�array�ab�

  

#

ussetlock�lock�array�ab�
�

wb � work�array�ab��

if�ab�dd�
  

final�array�wb��� � ab�

#else if�ab�dd�
  

final�array�wb � data� � �� � ab�

#else if�ab�dd�
  

final�array�wb � data� � data� � �� � ab�

#else  

final�array�wb � data� � data� � data� � �� � ab�

#

work�array�ab����

usunsetlock�lock�array�ab�
�

#

#else if�m�get�myid�
 �� �
  

for�iz � div��� � iz � div���� iz��
  

ac � key�array�iz��

while�ustestlock�lock�array�ac�

  

	��



#

ussetlock�lock�array�ac�
�

wc � work�array�ac��

if�ac�dd�
  

final�array�wc��� � ac�

#else if�ac�dd�
  

final�array�wc � data� � �� � ac�

#else if�ac�dd�
  

final�array�wc � data� � data� � �� � ac�

#else  

final�array�wc � data� � data� � data� � �� � ac�

#

work�array�ac����

usunsetlock�lock�array�ac�
�

#

#else if�m�get�myid�
 �� �
  

for�iw � TOTAL�KEYS�� � iw � div���� iw��
  

ad � key�array�iw��

while�ustestlock�lock�array�ad�

  

#

ussetlock�lock�array�ad�
�

wd � work�array�ad��

if�ad�dd�
  

final�array�wd��� � ad�

#else if�ad�dd�
  

final�array�wd � data� � �� � ad�

#else if�ad�dd�
  

final�array�wd � data� � data� � �� � ad�

#else  

final�array�wd � data� � data� � data� � �� � ad�

#

work�array�ad����

usunsetlock�lock�array�ad�
�

#

#

return�

#

�������������������������������������������������������������������

��������������������������� set�zero ������������������������������

	��



�������������������������������������������������������������������

�� This function sets every element of the work�array to zero�

This function is meant to be called by the m�fork function

specific to SGI machines�

��

void set�zero�div�� div�� div�


int div��

int div��

int div��

 

int ix� iy� iz� iw�

if�m�get�myid�
 �� �
  

for�ix � �� ix � div�� ix��


work�array�ix� � ��

#else if�m�get�myid�
 �� �
  

for�iy � div�� iy � div�� iy��


work�array�iy� � ��

#else if�m�get�myid�
 �� �
  

for�iz � div�� iz � div�� iz��


work�array�iz� � ��

#else if�m�get�myid�
 �� �
  

for�iw � div�� iw � MAX�KEY� iw��


work�array�iw� � ��

#

return�

#

�������������������������������������������������������������������

��������������������������� verify �� �����������������������������

�������������������������������������������������������������������

int verify�


 

int ix� check�

for�ix � �� ix � TOTAL�KEYS� ix��
  

if�final�array�ix� � final�array�ix���
  

check � ��

break�

#

else  check � ��#

#

	��



return check�

#

�������������������������������������������������������������������

��������������������������� increment �����������������������������

�������������������������������������������������������������������

�� This function counts the occurances of a KEY by incrementing the

value of work�array�KEY�� Thusly� work�array��� will contain a count

of the number of keys that are the number �� This function is

meant to be called using the SGI function m�fork� It is set up

for parallel execution�

��

void increment�div�� div�� div�


int div��

int div��

int div��

 

int ix� iy� iz� iw� aa� ab� ac� ad�

��ulock�t ba� bb� bc� bd���

if�m�get�myid�
 �� �
  

for�ix � �� ix � div�� ix��
 

aa � key�array�ix��

while�ustestlock�lock�array�aa�

  

#

ussetlock�lock�array�aa�
�

work�array�aa����

usunsetlock�lock�array�aa�
�

#

#else if�m�get�myid�
 �� �
  

for�iy � div�� iy � div�� iy��
 

ab � key�array�iy��

while�ustestlock�lock�array�ab�

  

#

ussetlock�lock�array�ab�
�

work�array�ab����

usunsetlock�lock�array�ab�
�

#

#else if�m�get�myid�
 �� �
  

	��



for�iz � div�� iz � div�� iz��
 

ac � key�array�iz��

while�ustestlock�lock�array�ac�

  

#

ussetlock�lock�array�ac�
�

work�array�ac����

usunsetlock�lock�array�ac�
�

#

#else  

for�iw � div�� iw � TOTAL�KEYS� iw��
 

ad � key�array�iw��

while�ustestlock�lock�array�ad�

  

#

ussetlock�lock�array�ad�
�

work�array�ad����

usunsetlock�lock�array�ad�
�

#

#

return�

#

�������������������������������������������������������������������

��������������������������� tally ���������������������������������

�������������������������������������������������������������������

�� This function tallys the number of work�array elements less than

or equal to the work�array index� This function is called

by the SGI function m�fork for � processors�

��

void tally�div�� div�� div�


int div��

int div��

int div��

 

int ix� iy� iz� iw�

if�m�get�myid�
 �� �
  

for�ix � �� ix � div�� ix��


work�array�ix� �� work�array�ix � ���

#else if�m�get�myid�
 �� �
  

	��



for�iy � div���� iy � div�� iy��


work�array�iy� �� work�array�iy � ���

#else if�m�get�myid�
 �� �
  

for�iz � div���� iz � div�� iz��


work�array�iz� �� work�array�iz � ���

#else if�m�get�myid�
 �� �
  

for�iw � div���� iw � MAX�KEY� iw��


work�array�iw� �� work�array�iw � ���

#

return�

#

�������������������������������������������������������������������

��������������������� MAIN PROGRAM ��������������������������������

�������������������������������������������������������������������

main�


 

double xx� aa� zz�

long long duration� end� stop� one� two� three� four� szo� inc� srt� tal�

FILE �true�sequential� �fork�sequential� �forked�

float data�

int ix� iy� yy� dd� dd�� dd�� dd��

division� div�� div�� div��

char� lock�file � �lock�file��

unsigned int MAX � �������

�� set up output files ��

true�sequential � fopen��tsequential�dat�� �w�
�

forked � fopen��forked�dat�� �w�
�

�� Create a sequence of keys to sort ��

create�seq� �������	����� ����
�������� 
�

�� calculate array boundaries for key�array final�array ��

division � TOTAL�KEYS���

div� � division�

div� � div� � division�

div� � div� � division�

�� calculate array boundaries for work�array ��

dd � MAX�KEY���

	��



dd� � dd�

dd� � dd� � dd�

dd� � dd� � dd�

�� Set up lock configuration and handle information ��

usconfig�CONF�INITSIZE� MAX
�

handle � usinit�lock�file
�

�� Initialize the lock�array �first time
��

for�ix � �� ix � MAX�KEY� ix��
  

lock�array�ix� � usnewlock�handle
�

usinitlock�lock�array�ix�
�

#

�� Initialize memory by running the sequential sort once ��

m�fork�set�zero� dd�� dd�� dd�
�

for�ix � �� ix � TOTAL�KEYS� ix��
  

work�array�key�array�ix�����

#

for�ix � �� ix � MAX�KEY� ix��
  

work�array�ix� �� work�array�ix � ���

#

counting�sort��� TOTAL�KEYS
�

�� Run the sort sequentially �single processor


as a baseline measurement for speedup�

��

for�iy � �� iy � ����� iy��
  

end � gethrtime�
� �� start time ��

�� initialize work�array to zero ��

for�ix � �� ix � MAX�KEY� ix��
  

work�array�ix� � ��

#

�� count occurances of each key being sorted ��

for�ix � �� ix � TOTAL�KEYS� ix��
  

work�array�key�array�ix�����

	��



#

�� count the elements in work�array less than or equal to ix ��

for�ix � �� ix � MAX�KEY� ix��
  

work�array�ix� �� work�array�ix � ���

#

�� sort the keys into final�array ��

counting�sort��� TOTAL�KEYS
�

stop � gethrtime�
�

�� Verify proper sorting ��

if�verify�

  

printf��True Sequential Final�Array �run 'd
 failed verification!"n�� iy
�

#

else  

printf��True Sequential Final�Array �run 'd
 passed verification!"n�� iy
�

#

duration � stop � end� �� calculate duration ��

data � �float
duration������������ �� convert duration to seconds ��

fprintf�true�sequential� �Optimum Sequential sort time is� 'f"n�� data
�

# �� end for ��

fclose�true�sequential
�

�� set number of processors to � ��

m�set�procs��
�

�� Initialize memory by running the forked sort once ��

m�fork�set�zero� dd�� dd�� dd�
�

m�fork�increment� div�� div�� div�
�

m�fork�tally� dd�� dd�� dd�
�

m�fork�do�sort� div�� div�� div�� dd�� dd�� dd�
�

�� Perform the counting sort using forking

and all � processors� This is what we

�hope� provides speedup�

��

for�iy � �� iy � ����� iy��
  

end � gethrtime�
� �� start time ��

	�




�� initialize work�array to zero ��

m�fork�set�zero� dd�� dd�� dd�
�

one � gethrtime�
�

�� count occcurances of each key being sorted ��

m�fork�increment� div�� div�� div�
�

two � gethrtime�
�

�� count the elements in work�array less than or equal to ix ��

m�fork�tally� dd�� dd�� dd�
�

three � gethrtime�
�

�� Record tally sums �at the upper interval limit
 in globals ��

data� � work�array�dd� � ���

data� � work�array�dd� � ���

data� � work�array�dd� � ���

four � gethrtime�
�

�� sort the keys into final�array ��

m�fork�do�sort� div�� div�� div�� dd�� dd�� dd�
�

stop � gethrtime�
�

if�verify�

  

printf��Fully Forked Final�Array �run 'd
 failed verification!"n�� iy
�

exit��
�

#

else  

printf��Fully Forked Final�Array �run 'd
 passed verification!"n�� iy
�

#

duration � stop � end� �� calculate duration ��

szo � one � end�

inc � two � one�

tal � three � two�

srt � stop � four�

data � �float
duration������������ �� convert duration to seconds��

fprintf�forked� �Forked sort time is� 'f"n�� data
�

data � �float
szo������������

fprintf�forked� �Time spent in set�zero� "t 'f "n�� data
�

data � �float
inc������������

fprintf�forked� �Time spent in increment�"t 'f "n�� data
�

data � �float
tal������������

fprintf�forked� �Time spent in tally� "t 'f "n�� data
�

data � �float
srt������������

fprintf�forked� �Time spent in do�sort� "t 'f "n�� data
�

	��



#

fclose�forked
�

return ��

#

	�	



	��



APPENDIX E� SIMULATION EXPERIMENTAL

DATA

�� HETEROGENEITY QUADRANT DATA

The tables included in this appendix are the �shorthand� matrices refered to

in Chapter V�

Machine
Job 	 � � � �

	 mean ����� 		 ��
 ���
� ���
� mean �� 	��� ��	
 �� �����
� mean 	��� 
� 	
�� �����	 ���	
� mean ���
� 
��	 �
 ���� 	���
� mean �� ����� 	������ 		��� 	�

Machine
Job � � � 
 	�

	 mean �
 ���

 	�
� ����� ����
� mean ���
� ���� 		��� 	���� ���
� mean ��� 
 	
� ��� �����
� mean ���	
 ����� ��� 		�� 	���
� mean ��� ��� ���� ����
	 ���

Table XII� High�Job� High�Machine Heterogeneity�

	��



Machine
Job 	 � � � �

	 mean �� �� �� �� �

� mean 	�� 	�� 	�� 	�� 	��
� mean ��
� ��
� ���
 ��
� ��
�
� mean 

�� 
�

 
�
� 
�
� 
�
�
� mean ����� ����� ����� ����� �����

Machine
Job � � � 
 	�

	 mean �� �	 �� �� ��
� mean 	�� 	�� 	�
 	�	 	��
� mean ��
� ��
� ��
� ��
	 ��


� mean 

�	 

�� 

�� 

�� 

��
� mean ����� ����	 ����� ����� ����


Table XIII� High�Job� Low�Machine Heterogeneity�

Machine
Job 	 � � � �

	 mean � 	��� 	�	 �
 ����
� mean � 	��	 	�� �� ���	
� mean 
 	��� 	�� �� ����
� mean � 	��� 	�� �� ����
� mean � 	��� 	�� �� ����

Machine
Job � � � 
 	�

	 mean �
 ���� ��� 


� ��
� mean �� ��

 �

 	���� ��
� mean �� ��
� �
� 


� ��
� mean �� ��
� �
� 



 �	
� mean �� ��
� �
� 


� ��

Table XIV� Low�Job� High�Machine Heterogeneity�

	��



Machine
Job 	 � � � �

	 mean �� �� �	 �� ��
� mean �� �� �� �	 ��
� mean �� �� �� �� ��
� mean �� �� �� �� ��
� mean �� �� �� �� ��

Machine
Job � � � 
 	�

	 mean �� �� �� �	 ��
� mean �� �� �� �� ��
� mean �� �� �� �� ��
� mean �� �	 �� �� ��
� mean �
 	
 �� 	
 ��

Table XV� Low�Job� Low�Machine Heterogeneity�

Machine
Job 	 � � � �

	 mean ������ ����� ���

 ���
� ����
� mean ����� ���
� 	���� 		��� ��	

� mean �����	 ����� ���	 	
�� 	���
� mean ���	
 ���
� ����� 
��	 ����
� mean 	������ ����
	 		��� ���� ���

Machine
Job � � � 
 	�

	 mean 	�
� ��� ��
 �
 		
� mean ���� 	��� ��� �� ��
� mean ��� ��� 	
� 
� 

� mean 	��� 		�� 	��� ��� �

� mean ���� ��� ��� �� 	�

Table XVI� High�Job� High�Machine� Consistent Heterogeneity�

	��



Machine
Job 	 � � � �

	 mean 


� ���� ���� 	��� ���
� mean 	���� ��

 ���	 	��	 �


� mean 


� ��
� ���� 	��� �
�
� mean 



 ��
� ���� 	��� �
�
� mean 


� ��
� ���� 	��� �
�

Machine
Job � � � 
 	�

	 mean 	�	 �
 �
 �� �
� mean 	�� �� �� �� �
� mean 	�� �� �� �� 

� mean 	�� �� �� �	 �
� mean 	�� �� �� �� �

Table XVII� Low�Job� High�Machine� Consistent Heterogeneity�

	��



APPENDIX F� SIMULATION EXPERIMENT

RESULTS

�� ZERO�VARIANCE SIMULATION EXPERIMENT RES�
ULTS

	���	 Hi�Hi Hi�Lo Lo�Hi Lo�Lo Hi�Hi�Con Lo�Hi�Con
OLB 	�����	�� 		
���� 	����� �	� ������	 
�

�
LBA ��� �
����� ��� 	��
� ����	 ���

Greedy ��� 	������ ��� ��
 	���� ���
Fastgreedy ��� 		
���� ��� �
� 	���� ���

	���� Hi�Hi Hi�Lo Lo�Hi Lo�Lo Hi�Hi�Con Lo�Hi�Con
OLB 	�������� 	����
	 
�

� �	
 ����	
 	�����
LBA ��� ������� ��
 
�� ���
	 ��


Greedy ��� 	�
���� ��� ��� 	���	 ���
Fastgreedy ��� 	����
� �
	 �

 	���
 �
�

����� Hi�Hi Hi�Lo Lo�Hi Lo�Lo Hi�Hi�Con Lo�Hi�Con
OLB 	�������� ������
 
�

� 	���� ������	 
�

�
LBA ����� ���
����� ���
� ����� ����� ���
�

Greedy ����� ��
��	� 	���� 	�		
 ���	� 	����
Fastgreedy ���
� ����
	� 	�
�	 	�	�� ���
� 	�
�	

����� Hi�Hi Hi�Lo Lo�Hi Lo�Lo Hi�Hi�Con Lo�Hi�Con
OLB 	�������� ����
�� 
�

� 	���� �����
	 
�

�
LBA ���	� ��������� ����� ����� ����� �����

Greedy ���
� �	��

� 	���� 	�		� ����� 	����
Fastgreedy ����
 ������	 	�
�� 	�	�� ����� 	�
��

Table XVIII� Baseline Simulation Experiment Results� Heterogeneity should be read
Job�Machine� Also� �Con� refers to consistency� absence of �Con� means the hetero�
geneity is inconsistent�

	��



�� RESULTS OF SIMULATION EXPERIMENTS WHERE
JOBS RAN FOR TIMES DIFFERENT FROM PRE�
DICTED TIMES�
a� Exponential Run�time Distribution Experiment Res�

ults

	���	 Lo�Hi Hi�Hi�Con Lo�Hi�Con
OLB 
�


��� ����


��� 
�

��	�
LBA ������ ��	�
��� ��	���

Greedy �
��
� 	������� ��
���
Fastgreedy ������ 	������� ����
�

	���� Lo�Hi Hi�Hi�Con Lo�Hi�Con
OLB 
�

���� ��������� 
�

��
�
LBA ������ ����
��� ������

Greedy ��	��� 	�����	� �
����
Fastgreedy ����	� 	������� ������

����� Lo�Hi Hi�Hi�Con Lo�Hi�Con
OLB 
�

��	� ������	��� 
�

��
�
LBA �������� �������� ��������

Greedy 	�
���	� �������� 	��

���
Fastgreedy 	�
����� ������
� 	�
�����

����� Lo�Hi Hi�Hi�Con Lo�Hi�Con
OLB 
�

���� �����
	��� 
�

����
LBA �������� �������� ����
���

Greedy 	�
����� �������� 	�
���	�
Fastgreedy 	�
����� ����	��� 	�
�����

Table XIX� Exponential Experiment Results for the Low�Job� High�Machine� High�
Job� High�Machine� Consistent� and Low�Job� High�Machine� Consistent categories of
heterogeneity�

	��



b� Truncated Gaussian Run�time Distribution Experi�
ment Results

	���	 Lo�Hi Hi�Hi�Con Lo�Hi�Con
OLB 	������
� ���������� 	��������
LBA 	�����	� �������� 	�������

Greedy �
��
� 	���	��� ������
Fastgreedy ������ 	���
��� �
��
�

	���� Lo�Hi Hi�Hi�Con Lo�Hi�Con
OLB 	����
��� ���������� 	��������
LBA 	������� �������� 	�������

Greedy ������ 	���
��� ������
Fastgreedy �
��	� 	������� ������

����� Lo�Hi Hi�Hi�Con Lo�Hi�Con
OLB 	���
���� ���������� 	��������
LBA ����	��� 
�
����� ��������

Greedy ���
���� ������
� ���
����
Fastgreedy �������� ����
�
� ����	���

����� Lo�Hi Hi�Hi�Con Lo�Hi�Con
OLB 	�������� 	�����

���� 	��������
LBA �������� 
�
����� ����
�
�

Greedy �������� �������� ��������
Fastgreedy �������� �������� ��������

Table XX� Truncated Gaussian Experiment Results for the Low�Job� High�Machine�
High�Job� High�Machine� Consistent� and Low�Job� High�Machine� Consistent cat�
egories of heterogeneity�

	�




�� ADDITIONAL EXPERIMENTS
a� Comparison of Baseline Run�time and Theoretical

Best Case Run�time

	���	 Hi�Hi Hi�Lo Lo�Hi Lo�Lo Hi�Hi�Con Lo�Hi�Con
OLB ����	�� 	�� 		���� ��� 
	���� 		����
LBA ���� ��	� 
��� ���� 
��� 
���

Greedy ���� 	� � ���� 	�� ���� ����
Fastgreedy ���� 	�� ���� 	�� ��
� ��	�

	���� Hi�Hi Hi�Lo Lo�Hi Lo�Lo Hi�Hi�Con Lo�Hi�Con
OLB ������� 	�� 		���� ��� ������ 		����
LBA ��
� �
�� 
��� ���� 
��� 
���

Greedy ��
� 	� ���� 	�� ���� ����
Fastgreedy ��
� 	�� ���� 	�� ���� ����

����� Hi�Hi Hi�Lo Lo�Hi Lo�Lo Hi�Hi�Con Lo�Hi�Con
OLB 	�	���� �� ����� ��� ��

�� �����
LBA ��	� ���� 
��� �	���
� 
��� 
���

Greedy ���� ����� ���� 
� ���� ����
Fastgreedy ���� �� ���� 	�� ���� ����

����� Hi�Hi Hi�Lo Lo�Hi Lo�Lo Hi�Hi�Con Lo�Hi�Con
OLB 	��	�	� �� ����� �	� ������ �����
LBA �	�� �
�� 
��� ��	� 
��� 
���

Greedy ���� ����� ���� 
� ���� ����
Fastgreedy 	
�� �� ���� 	�� ���� ����

Table XXI� Theoretical Best versus Baseline Completion Time�� This data depicts
the percentage di�erence between the theoretical Best Case Time and the baseline
completion time� In every case� SmartNet builds a schedule which takes longer to
execute than the theoretical Best Case Time�

	��



b� Greedy versus Fast Greedy Performance

Test Hi�Hi Hi�Lo Lo�Hi Lo�Lo Hi�Hi�Con Lo�Hi�Con
Baseline ������ ��	�� ����� ����� ������ �����

Exponential 	����� ������ �����
T�Gaussian ����� ������ �����

Table XXII� Greedy versus Fast Greedy� Sequential Method 	�� � This table shows
how much faster schedules built by the Greedy algorithm �nish executing versus sched�
ules built by the Fast Greedy algorithm using the Sequential Method of job request�
Positive values mean that the Greedy schedule is executed xx� faster than the Fast
Greedy schedule�

c� Grouped versus Sequential Job Request Methods

Hi�Hi Hi�Lo Lo�Hi Lo�Lo Hi�Hi�Con Lo�Hi�Con
Grouped Method 	
�
�� ����� ����� ��	�� ����� �����

Table XXIII� Greedy versus Fast Greedy� Grouped Method� This table shows how
much faster schedules built by the Greedy algorithm �nish executing versus schedules
built by the Fast Greedy algorithm� Positive values mean that the Greedy schedule
is executed xx� faster than the Fast Greedy schedule�

	�	



	��



APPENDIX G� HOW TO RUN SMARTNET

�� GETTING STARTED
a� Unpacking the Code

It is suggested by the SmartNet development team that the code be unpacked

into a directory called SOLARIS� We follow that advice throughout this appendix�

The name SOLARIS is used because we used the Solaris operating system version of

SmartNet� and hence compiled the code on a Solaris machine� Take the sn�tar�gz �le�

move it into the SOLARIS directory� and unzip it� Next� execute the command

tar xvf sn�tar

and the source code will expand�

b� Setting the Environment

In order to compile and run SmartNet� your environment must be set properly�

Below is all that I needed to do to set my environment for use at NPS �my login name

was rkarmstr� substitute your path and login name as appropriate��

� setup for SmartNet setenv SNROOT

� �users�work��rkarmstr�SOLARIS set path���path

� �users�work��rkarmstr�SOLARIS�local�bin
 set path���path

� �opt�cygnus�bin
 set path���path �usr�xpg��bin
 setenv

� LD�LIBRARY�PATH �usr�include"��LD�LIBRARY�PATH

c� Compiling SmartNet

While this used to be a terribly di�cult procedure at NPS� we �xed the dif�

�culties� so now the process seems to work �ne� Compiling must be performed on a

machine running the Solaris operating system� There are two such machines available

at NPS� cincinnatus and virgo� Both machines are running SunOS ����� and both

machines are SPARCstation���s� In order to compile SmartNet� perform the following

tasks� in order� �This assumes you have already installed the code��

�SunOS 
�
 is also called Solaris ��
�

	��



	� telnet virgo or telnet cincinnatus�

�� cd �SOLARIS

�� src�sn�configure ��enable�use"�gnumake ��enable�use"�gcc

�� make depend

�� make

Other command line arguments to configure are listed below�

Usage� configure �options� �host�

Options� �defaults in brackets after descriptions�

Configuration�

��cache�file�FILE cache test results in FILE

��help print this message

��no�create do not create output files

��quiet� ��silent do not print �checking���� messages

��version print the version of autoconf that

created configure

Directory and file names�

��prefix�PREFIX install architecture�independent

files in PREFIX ��usr�local�

��exec�prefix�PREFIX install architecture�dependent

files in PREFIX �same as prefix�

��srcdir�DIR find the sources in DIR

�configure dir or ���

��program�prefix�PREFIX prepend PREFIX to installed

program names

��program�suffix�SUFFIX append SUFFIX to installed

program names

��program�transform�name�PROGRAM run sed PROGRAM on

installed program names

Host type�

��build�BUILD configure for building on

BUILD �BUILD�HOST�

��host�HOST configure for HOST �guessed�

��target�TARGET configure for TARGET �TARGET�HOST�

	��



Features and packages�

��disable�FEATURE do not include FEATURE

�same as ��enable�FEATURE�no


��enable�FEATURE��ARG� include FEATURE �ARG�yes�

��with�PACKAGE��ARG� use PACKAGE �ARG�yes�

��without�PACKAGE do not use PACKAGE

�same as ��with�PACKAGE�no


��x�includes�DIR X include files are in DIR

��x�libraries�DIR X library files are in DIR

��enable and ��with options recognized�

��enable�use�gnumake use the gnumake utility�

very nifty indeed

��enable�use�gcc use the gcc compiler instead of

native compiler

��enable�use�DEBUG make this thing DEBUG�ed

��enable�use�OPTIMIZE make this thing OPTIMIZE�ed

��enable�use�RELEASE make a releable version�

��enable�use�static�link make static linked binaries�

��enable�use�purecov make static linked binaries�

��with�x use the X Window System

After several minutes� you will have compiled all the SmartNet binaries�

�� USING THE SMARTNET SIMULATOR

This section assumes that the user has access to the SmartNet Users Guide �Ref�

	��� The Users Guide includes extensive instructions for and examples of commands

for running SmartNet� The Users Guide does not include any information about

running SmartNet in simulation mode� however� This section explains how to run

SmartNet in simulation mode�

a� Files

In order to run SmartNet in simulation mode� there is speci�c information that

needs to be provided in certain �les that will make SmartNet perform correctly�

	��



i� �smartnetrc

This �le is required by SmartNet regardless of whether it is being run

in simulation mode or not� The �le may need to be altered� depending upon what we

are trying to measure with the simulator� Here is a sample �smartnetrc �le�

dbInFilename� �users�work��rkarmstr�SOLARIS�local�tests�hihi�����dat

dbOutFilename� �dev�null

scheduler� OLB

rescheduleMode� Off

debug� none

debugFile� �dev�null

verbosity� v q

In the above �smartnetrc�le� we would need to change the name of the input database

�le dbInFilename dependent upon the test we were running� Also� the scheduling

algorithm used would need to be changed� Lastly� we may need to consider enabling

the reschedule capability rescheduleMode in order to allow rescheduling to occur�

The other lines can be altered as desired� explanation of all �elds in the �smartnetrc

�le can be found in the Users Guide�

ii� Command File

The command �le lists jobs to be schedules and subsequently run by

SmartNet� In simulation mode� SmartNet needs the command �le data in order to

know what jobs are to be scheduled and their execution simulated� An example of two

types of command �les is available in this appendix in Section �� The command �le

can be anywhere in our directory structure� we will specify it by name and location

when needed�

b� Commands

In order to run SmartNet in simulation mode� several executables must be

started in a particular order� First� the SmartNet�mastermust be started in simulation

mode� This starts the SmartNet server in simulation mode as well as the SmartNet�

queue� It also reads the SmartNet database for use by the scheduler� An example

	��



database is located in Section � of this appendix� These programs basically start

SmartNet� Next� we need to start the SmartNet logger� which enables logging of

all job execution and scheduling messaging� After the SmartNet logger� be start the

SmartNet submit program in simulation mode� which submits jobs� via the command

�le� to SmartNet so that these jobs can be scheduled�

After these commands have been entered� SmartNet will build a schedule�

simulate the execution of the schedule� and stop� SmartNet master� queue� and server

will still be running until killed� SmartNet submit also remains running� and must

be killed by process number� SmartNet master and the rest can be killed with the

command sn�control �� OFF� Note that the SmartNet logger will halt itself after

the schedule has executed� Section � of this appendix has a sample script used to

run through a single iteration of the process described above� Section � includes the

command line arguments needed to start all the executables discussed here�

c� Scripts

In order to make multiple runs of the SmartNet in simulation mode� we found

it most helpful to use scripts� In the previous section� we discussed one of the many

scripts used to help run SmartNet in simulation mode over and over again without

the need for human intervention at the beginning and end of each test of SmartNet�

Scripts were used throughout this research to simplify all the work performed�

Section � also includes a script used to run a set of experiments using mul�

tiple command �les and multiple databases� It basically walks through the directory

structure set up to house the experiments and performs sequences of tests� Instead of

waiting at the terminal to type the commands� they have been scripted�

Section � also includes the Perl scripts written to parse data from the log �les

that the SmartNet logger writes� These log �les include scheduling information and

runtime information� We parsed this data using the �le parselog�pl� This Perl

script extracts the important information from the log �les and puts it into another

�le� speci�ed in the script� This parsed information is then parsed and averaged

	��



again with the Perl script collect�pl� also found in Section �� This script reduces

the parsed data to a manageable form� The output is less than a page� and represents

the run�time duration information of �� separate executions of SmartNet�

�� RUNNING SMARTNET IN SIMULATION MODE

Previous to this section� we discussed the necessary components of getting

SmartNet ready to run� scripts used� and �les�commands needed� Here� we put it all

together in a step�by�step format in an attempt to make the process easier to follow�

	� Unpack SmartNet source code�

�� Compile SmartNet source code into SmartNet binaries�

�� Determine the experiments you need to perform�

� Establish the directory structure you need for your output to be easily
identi�ed as being produced by a certain database or command �le� You
will need a �smartnetrc �le in every directory from which you will run
SmartNet�

� Build your command �le�s��
� Build you database�s��
� Ensure your �smartnetrc �le�s� are calling the correct database �le and
scheduling algorithm�

� Edit the parselog�pl and collect�pl �les� as necesary� Each directory
that you are running SmartNet from should contain a copy of both of these
�les� They should be able to be executed�

�� Build your scripts speci�c to the command �les you intend to test� You will
want one of each type in each directory from which you are running SmartNet�

�� Build your scripts speci�c to running di�erent sets of SmartNet scripts listed
previously� This is the big� �start it o�� script�

�� Run the �start it o�� script and collect your output�

Figure �� shows how we set up our directory structure� to include naming

conventions and �les included�

	��



.smartnetrc

125-1.sh

125-2.sh

500-3.sh

500-4.sh

parselog.pl

collect.pl

.smartnetrc

125-up.sh

125-dn.sh

500-up.sh

500-dn.sh

parselog.pl

collect.pl

the following subdirectories

the following subdirectories

scripts to start collective runs,

database files, command files

hihi hilo lohi lolo hihi-consistent lohi-consistent

t300.0 lantzt0.0 exp

LBA Greedy FastgreedyOLB

Each directory above has

Each directory above has

~rkarmstr/test

These were the directories

from which SmartNet was

run.  Output files were written

to each of these directories

specific to the algorithm,

categories of heterogeneity,

and command file used.command files

database file

used

used

category of

heterogeneity

used

algorithm

used

Figure ��� Directory Structure Used For Experiments� This was the directory struc�
ture we used throughout the conduct of this research�

	� EXAMPLE COMMAND FILES

This section contains sample command�les used in the conduct of this research�

a� Command File � The Random Method

This sample command �le is used to tell SmartNet the names of the jobs it

needs to schedule� The jobs are read into SmartNet one at a time and with uniform

randomness � hence� the name The Random Method�

model � job�

commandline � job�

cchars � ���

	�




stdout � �dev�null

submit � �

model � job�

commandline � job�

cchars � ���

stdout � �dev�null

submit � �

model � job�

commandline � job�

cchars � ���

stdout � �dev�null

submit � �

model � job�

commandline � job�

cchars � ���

stdout � �dev�null

submit � �

model � job�

commandline � job�

cchars � ���

stdout � �dev�null

submit � �

model � job�

commandline � job�

cchars � ���

stdout � �dev�null

submit � �

model � job�

commandline � job�

cchars � ���

stdout � �dev�null

submit � �

model � job�

commandline � job�

cchars � ���

	��



stdout � �dev�null

submit � �

	�	



b� Command File � The Grouped Method

This sample command �le also tells SmartNet which jobs it needs to schedule�

It does so by grouping jobs� Note thatjob� is requested to run �� times � hence� the

grouped method�

model � job�

commandline � job�

cchars � ���

stdout � �dev�null

submit � ��

model � job�

commandline � job�

cchars � ���

stdout � �dev�null

submit � ��

model � job�

commandline � job�

cchars � ���

stdout � �dev�null

submit � ��

model � job�

commandline � job�

cchars � ���

stdout � �dev�null

submit � ��

model � job�

commandline � job�

cchars � ���

stdout � �dev�null

submit � ��

	��



�� EXAMPLE DATABASE FILE
��

�� Armstrong sample database file

�� for testing the SmartNetsimulator

��

��

�� The number of Site objects

��

�

��

�� The number of Machine objects

��

�

�� The IP address is repeated for all machines because

�� SmartNet tries to connect to the machine even in

�� simulation mode� even though it will not run anything

�� on the machine� I gave it the IP address of hetero�

��

�� Also� the names of te machines and jobs is notional

�� See the SmartNet Users Guide for a more realistic

�� database example�

machine� �� Machine name

Sun �� Architecture

����������� �� IP Address

Sun�Sparc ���

Notional

� �� Relative cost

� �� Is the machine notional(

NULL �� Site Name

machine� �� Machine name

Sun �� Architecture

����������� �� IP Address

Sun�Sparc ���

Notional

� �� Relative cost

� �� Is the machine notional(

NULL �� Site Name

	��



machine� �� Machine name

Sun �� Architecture

����������� �� IP Address

Sun�Sparc ���

Notional

� �� Relative cost

� �� Is the machine notional(

NULL �� Site Name

machine� �� Machine name

Sun �� Architecture

����������� �� IP Address

Sun�Sparc ���

Notional

� �� Relative cost

� �� Is the machine notional(

NULL �� Site Name

��

�� The number of Model objects

��

�

job� �� Model name

Bob�s Test Application�

� �� idempotent ��$��

� �� The number of description lines

time

job� �� Model name

Bob�s Test Application�

� �� idempotent ��$��

� �� The number of description lines

time

job� �� Model name

Bob�s Test Application�

� �� idempotent ��$��

� �� The number of description lines

time

	��



��

�� The number of ModelMachine objects

��

��

machine� �� Machine name

job� �� Model name

NULL �� Group Name

normal �� distribution type

��������� �� moment�� CHANGE FOR EACH

�������� �� moment�� CHANGE FOR EACH

��� �� moment��

�� � ������� �� Theoretical compute function

�� � � �� Theoretical Network function

� �� Theoretical data use function

NULL �� Theoretical floating�point function

�� Compute Data�

� �� The amount of Experiential data

� �� The amount of normalized Experiential data

�� Network Data�

� �� The amount of Experiential data

machine� �� Machine name

job� �� Model name

NULL �� Group Name

normal �� distribution type

���� �� moment�� CHANGE FOR EACH


��� �� moment�� CHANGE FOR EACH

��� �� moment��

�� � ���� �� Theoretical compute function

�� � � �� Theoretical Network function

� �� Theoretical data use function

NULL �� Theoretical floating�point function

�� Compute Data�

� �� The amount of Experiential data

� �� The amount of normalized Experiential data

�� Network Data�

	��



� �� The amount of Experiential data

machine� �� Machine name

job� �� Model name

NULL �� Group Name

normal �� distribution type

��
��� �� moment�� CHANGE FOR EACH

������ �� moment�� CHANGE FOR EACH

��� �� moment��

�� � ���
� �� Theoretical compute function

�� � � �� Theoretical Network function

� �� Theoretical data use function

NULL �� Theoretical floating�point function

�� Compute Data�

� �� The amount of Experiential data

� �� The amount of normalized Experiential data

�� Network Data�

� �� The amount of Experiential data

machine� �� Machine name

job� �� Model name

NULL �� Group Name

normal �� distribution type

���� �� moment�� CHANGE FOR EACH

���� �� moment�� CHANGE FOR EACH

��� �� moment��

�� � ���� �� Theoretical compute function

�� � � �� Theoretical Network function

� �� Theoretical data use function

NULL �� Theoretical floating�point function

�� Compute Data�

� �� The amount of Experiential data

� �� The amount of normalized Experiential data

�� Network Data�

� �� The amount of Experiential data

machine� �� Machine name

job� �� Model name

	��



NULL �� Group Name

normal �� distribution type

������ �� moment�� CHANGE FOR EACH

������ �� moment�� CHANGE FOR EACH

��� �� moment��

�� � ����� �� Theoretical compute function

�� � � �� Theoretical Network function

� �� Theoretical data use function

NULL �� Theoretical floating�point function

�� Compute Data�

� �� The amount of Experiential data

� �� The amount of normalized Experiential data

�� Network Data�

� �� The amount of Experiential data

machine� �� Machine name

job� �� Model name

NULL �� Group Name

normal �� distribution type

���� �� moment�� CHANGE FOR EACH

�
��� �� moment�� CHANGE FOR EACH

��� �� moment��

�� � ���� �� Theoretical compute function

�� � � �� Theoretical Network function

� �� Theoretical data use function

NULL �� Theoretical floating�point function

�� Compute Data�

� �� The amount of Experiential data

� �� The amount of normalized Experiential data

�� Network Data�

� �� The amount of Experiential data

machine� �� Machine name

job� �� Model name

NULL �� Group Name

normal �� distribution type

����� �� moment�� CHANGE FOR EACH


�
�� �� moment�� CHANGE FOR EACH

��� �� moment��

�� � ���� �� Theoretical compute function

	��



�� � � �� Theoretical Network function

� �� Theoretical data use function

NULL �� Theoretical floating�point function

�� Compute Data�

� �� The amount of Experiential data

� �� The amount of normalized Experiential data

�� Network Data�

� �� The amount of Experiential data

machine� �� Machine name

job� �� Model name

NULL �� Group Name

normal �� distribution type

�	���� �� moment�� CHANGE FOR EACH

����
�� �� moment�� CHANGE FOR EACH

��� �� moment��

�� � �	��� �� Theoretical compute function

�� � � �� Theoretical Network function

� �� Theoretical data use function

NULL �� Theoretical floating�point function

�� Compute Data�

� �� The amount of Experiential data

� �� The amount of normalized Experiential data

�� Network Data�

� �� The amount of Experiential data

machine� �� Machine name

job� �� Model name

NULL �� Group Name

normal �� distribution type

������ �� moment�� CHANGE FOR EACH

������ �� moment�� CHANGE FOR EACH

��� �� moment��

�� � ���� �� Theoretical compute function

�� � � �� Theoretical Network function

� �� Theoretical data use function

NULL �� Theoretical floating�point function

�� Compute Data�

� �� The amount of Experiential data

� �� The amount of normalized Experiential data

	��



�� Network Data�

� �� The amount of Experiential data

machine� �� Machine name

job� �� Model name

NULL �� Group Name

normal �� distribution type

����
�� �� moment�� CHANGE FOR EACH

������� �� moment�� CHANGE FOR EACH

��� �� moment��

�� � �����
 �� Theoretical compute function

�� � � �� Theoretical Network function

� �� Theoretical data use function

NULL �� Theoretical floating�point function

�� Compute Data�

� �� The amount of Experiential data

� �� The amount of normalized Experiential data

�� Network Data�

� �� The amount of Experiential data

machine� �� Machine name

job� �� Model name

NULL �� Group Name

normal �� distribution type


��� �� moment�� CHANGE FOR EACH

����� �� moment�� CHANGE FOR EACH

��� �� moment��

�� � ��
� �� Theoretical compute function

�� � � �� Theoretical Network function

� �� Theoretical data use function

NULL �� Theoretical floating�point function

�� Compute Data�

� �� The amount of Experiential data

� �� The amount of normalized Experiential data

�� Network Data�

� �� The amount of Experiential data

machine� �� Machine name

job� �� Model name

	�




NULL �� Group Name

normal �� distribution type

�������� �� moment�� CHANGE FOR EACH

	������� �� moment�� CHANGE FOR EACH

��� �� moment��

�� � ������� �� Theoretical compute function

�� � � �� Theoretical Network function

� �� Theoretical data use function

NULL �� Theoretical floating�point function

�� Compute Data�

� �� The amount of Experiential data

� �� The amount of normalized Experiential data

�� Network Data�

� �� The amount of Experiential data

��

�� The SNData default Override object�

��

NULL ��Model name

NULL ��Machine name

ExecutionEquation NULL

DataUseEquation NULL

NetworkEquation NULL

ComputeWeight �

NetworkWeight �

TheoreticalExecutionWeight ���

ExperientialExecutionWeight ���

OverrideExecutionWeight ���

TheoreticalNetworkWeight ���

ExperientialNetworkWeight ���

OverrideNetworkWeight ���

End�Override

��

�� inter�site network information �bandwidth � latency


��

End�NetMatrix

	��



�� EXAMPLE SCRIPTS
a� Script for Starting and Running SmartNet� ������sh

This is a script which makes it very easy to start and run SmartNet in simu�

lation mode� The script will start SmartNet� execute a schedule in simulation mode�

and then stop SmartNet� If you need to do this repetitively� the script should include

multiple sequences of the below commands� We built scripts like the one below for

each separate command �le� They were located in the directory from which we ran

SmartNet for that particular experiment�

�!�bin�ksh

� Start the master�server�queue

� �S is for simulation mode

� �s denotes the scheduling algorithm we desire to use�

� This can also be spcified in the �smartnetrc file�

� �f denotes the name of the database file to be loaded

� into SmartNet

smartnet�master �S �s OLB �f �users�work��rkarmstr�tests�hihi�����dat �

� This allows things to start up correctly

sleep ��

� Start the logger

� �n tells the logger how many jobs will be scheduled so that it

� knows when to die

sn�log �n ��� �o test��������log �

� This allows things to start up correctly

sleep �

� Start SmartNet submit

� �S is for simulation mode

� the required argument is the name of the command file

� listing the jobs requests

sn�submit �S �users�work��rkarmstr�tests�test������cmd �

� Wait for the SmartNet logger to die

wait '�

	�	



� Kill SmartNet submit

kill �QUIT '�

� Wait for smartNet submit to die

sleep ��

� Kill the SmartNet master�server�queue

sn�control �� OFF

	��



b� Script for Running Experiments� tt����sh
�! �bin�ksh

� This is a script to run all ��� variance tests

� for hihi$hilo$lohi$lolo$linear heterogeneous sets

� on olb$lba$greedy$fastgreedy algorithms�

� olb tests

mail rkarmstr � �users�work��rkarmstr�SOLARIS�local�tests�mmolb

cd �users�work��rkarmstr�SOLARIS�local�tests�olb�hihi�t���

������sh

sleep ��

������sh

sleep ��

������sh

sleep ��

������sh

sleep ��

parselog�pl

collect�pl

cd �users�work��rkarmstr�SOLARIS�local�tests�olb�hilo�t���

������sh

sleep ��

������sh

sleep ��

������sh

sleep ��

������sh

sleep ��

parselog�pl

collect�pl

cd �users�work��rkarmstr�SOLARIS�local�tests�olb�lohi�t���

������sh

sleep ��

������sh

sleep ��

������sh

sleep ��

������sh

sleep ��

parselog�pl

collect�pl

	��



cd �users�work��rkarmstr�SOLARIS�local�tests�olb�lolo�t���

������sh

sleep ��

������sh

sleep ��

������sh

sleep ��

������sh

sleep ��

parselog�pl

collect�pl

cd �users�work��rkarmstr�SOLARIS�local�tests�olb�linear�t���

������sh

sleep ��

������sh

sleep ��

������sh

sleep ��

������sh

sleep ��

parselog�pl

collect�pl

� lba tests

mail rkarmstr � �users�work��rkarmstr�SOLARIS�local�tests�mmlba

cd �users�work��rkarmstr�SOLARIS�local�tests�lba�hihi�t���

������sh

sleep ��

������sh

sleep ��

������sh

sleep ��

������sh

sleep ��

parselog�pl

collect�pl

cd �users�work��rkarmstr�SOLARIS�local�tests�lba�hilo�t���

������sh

sleep ��

������sh

sleep ��

������sh

	��



sleep ��

������sh

sleep ��

parselog�pl

collect�pl

cd �users�work��rkarmstr�SOLARIS�local�tests�lba�lohi�t���

������sh

sleep ��

������sh

sleep ��

������sh

sleep ��

������sh

sleep ��

parselog�pl

collect�pl

cd �users�work��rkarmstr�SOLARIS�local�tests�lba�lolo�t���

������sh

sleep ��

������sh

sleep ��

������sh

sleep ��

������sh

sleep ��

parselog�pl

collect�pl

cd �users�work��rkarmstr�SOLARIS�local�tests�lba�linear�t���

������sh

sleep ��

������sh

sleep ��

������sh

sleep ��

������sh

sleep ��

parselog�pl

collect�pl

� greedy tests

mail rkarmstr � �users�work��rkarmstr�SOLARIS�local�tests�mmgreedy

cd �users�work��rkarmstr�SOLARIS�local�tests�greedy�hihi�t���

	��



������sh

sleep ��

������sh

sleep ��

������sh

sleep ��

������sh

sleep ��

parselog�pl

collect�pl

cd �users�work��rkarmstr�SOLARIS�local�tests�greedy�hilo�t���

������sh

sleep ��

������sh

sleep ��

������sh

sleep ��

������sh

sleep ��

parselog�pl

collect�pl

cd �users�work��rkarmstr�SOLARIS�local�tests�greedy�lohi�t���

������sh

sleep ��

������sh

sleep ��

������sh

sleep ��

������sh

sleep ��

parselog�pl

collect�pl

cd �users�work��rkarmstr�SOLARIS�local�tests�greedy�lolo�t���

������sh

sleep ��

������sh

sleep ��

������sh

sleep ��

������sh

sleep ��

parselog�pl

	��



collect�pl

cd �users�work��rkarmstr�SOLARIS�local�tests�greedy�linear�t���

������sh

sleep ��

������sh

sleep ��

������sh

sleep ��

������sh

sleep ��

parselog�pl

collect�pl

� fastgreedy tests

mail rkarmstr � �users�work��rkarmstr�SOLARIS�local�tests�mmfastgreedy

cd �users�work��rkarmstr�SOLARIS�local�tests�fastgreedy�hihi�t���

������sh

sleep ��

������sh

sleep ��

������sh

sleep ��

������sh

sleep ��

parselog�pl

collect�pl

cd �users�work��rkarmstr�SOLARIS�local�tests�fastgreedy�hilo�t���

������sh

sleep ��

������sh

sleep ��

������sh

sleep ��

������sh

sleep ��

parselog�pl

collect�pl

cd �users�work��rkarmstr�SOLARIS�local�tests�fastgreedy�lohi�t���

������sh

sleep ��

������sh

sleep ��

	��



������sh

sleep ��

������sh

sleep ��

parselog�pl

collect�pl

cd �users�work��rkarmstr�SOLARIS�local�tests�fastgreedy�lolo�t���

������sh

sleep ��

������sh

sleep ��

������sh

sleep ��

������sh

sleep ��

parselog�pl

collect�pl

cd �users�work��rkarmstr�SOLARIS�local�tests�fastgreedy�linear�t���

������sh

sleep ��

������sh

sleep ��

������sh

sleep ��

������sh

sleep ��

parselog�pl

collect�pl

mail rkarmstr � �users�work��rkarmstr�SOLARIS�local�tests�mmdone

	��




� EXAMPLE PARSE SCRIPTS
a� Parsing Run�Time Data From Log Files� parselog�pl

�!�bin�perl

� This Perl script is meant to run on version Perl ����

� Perl � is loaded onto virgo�

� This script is written for � variance tests� That is why

� it only looks for �� repetitions of the logfile� For tests

� where you run SmartNet more than once for each command file�

� you need to change the ��� to ���� or whatever number

� of reps you run� See the note at each place needing change�

use Cwd�

while ����log�
  

chmod �	��� ���

#

)files � ��test������� �test������� �test������� �test������
�

for ��yy � �� �yy � �� �yy��
  

open�OUT� ��parse�)files��yy��log�
�

print OUT �Data parsed from file�"t)files��yy��log"n"n"n��

�dir � cwd�
�

print OUT �Output from directory�"n"t�dir"n"n��

�sum � ��

for ��ix � �� �ix � �� �ix��
  ��Need to change the ��� to ���� normally

�iy � �ix � ��

�aa � ��

�flag � ��

�count � ��

�machine� � ��

�machine� � ��

�machine� � ��

�machine� � ��

�machine� � ��

�machine	 � ��

�machine
 � ��

�machine� � ��

�machine� � ��

�machine�� � ��

�job� � ��

	�




�job� � ��

�job� � ��

�job� � ��

�job� � ��

open�IN� �)files��yy���iy�log�
 or die �Can�t open )files��yy���iy�log"n��

while ��line � �IN�
  

��one� �two� �three� �four� �five� �six
 � split�� �� �line
�

if ���one eq �SCHED�
 �� ��flag �� �
 
  

if��four eq �host�machine���
  

�machine����

#elsif ��four eq �host�machine���
  

�machine����

#elsif ��four eq �host�machine���
  

�machine����

#elsif ��four eq �host�machine���
  

�machine����

#elsif ��four eq �host�machine���
  

�machine����

#elsif ��four eq �host�machine	��
  

�machine	���

#elsif ��four eq �host�machine
��
  

�machine
���

#elsif ��four eq �host�machine���
  

�machine����

#elsif ��four eq �host�machine���
  

�machine����

#elsif ��four eq �host�machine����
  

�machine�����

#

#

if ���one eq �SCHED�
 �� ��flag �� �
 
  

if��five eq �model�job���
  

�job����

#elsif ��five eq �model�job���
  

�job����

#elsif ��five eq �model�job���
  

�job����

#elsif ��five eq �model�job���
  

�job����

#elsif ��five eq �model�job���
  

�job����

	��



#

#

if ���one eq �START�
 �� ��flag �� �
 
  

�three �% s�time���g�

�three �% s����g�

�start��ix� � �three�

print OUT �Run �iy� start�"t"t�start��ix�"n��

�flag � ��

#

if ��one eq �DONE�
  

�count���

if���count �� ���
 and ��yy � �

  

�three �% s�time���g�

�three �% s����g�

�end��ix� � �three�

print OUT �Run �iy� end�"t"t�end��ix�"n��

#elsif���count �� ���
 and ��yy � �

  

�three �% s�time���g�

�three �% s����g�

�end��ix� � �three�

print OUT �Run �iy� end�"t"t�end��ix�"n��

#

#

#

�duration��ix� � �end��ix� � �start��ix��

print OUT �DURATION for Run �iy is� �duration��ix�"n"n��

�sum � �sum � )duration��ix��

close IN�

print OUT �Number of machine� assignments� �machine�"n��

print OUT �Number of machine� assignments� �machine�"n��

print OUT �Number of machine� assignments� �machine�"n��

print OUT �Number of machine� assignments� �machine�"n��

print OUT �Number of machine� assignments� �machine�"n��

print OUT �Number of machine	 assignments� �machine	"n��

print OUT �Number of machine
 assignments� �machine
"n��

print OUT �Number of machine� assignments� �machine�"n��

print OUT �Number of machine� assignments� �machine�"n��

print OUT �Number of machine�� assignments� �machine��"n"n��

print OUT �Number of job� assignments� �job�"n��

print OUT �Number of job� assignments� �job�"n��

print OUT �Number of job� assignments� �job�"n��

	�	



print OUT �Number of job� assignments� �job�"n��

print OUT �Number of job� assignments� �job�"n"n��

#

�average � �sum��� �� Need to change to ���� normally

print OUT �"nAverage runtime for )files��yy� is� �average"n��

close OUT�

#

	��



b� Collecting Run�Time Data
�! �bin�perl

use Cwd�

)files � �parse���log��

�dir � cwd�
�

��first� �users� �work�� �rkarmstr� �solaris� �here� �tests� �algorithm� �heteroge

�ix � ��

open�OUT� ���algorithm�collect�
 or die �Cannot open �algorithm�collect"n��

print OUT �Algorithm�"t�algorithm"nHeterogeneity�"t�heterogeneity"nTest run�"t�var

while �)files��ix�
 

open�IN� �shift )files

 or die �Can�t open �shift )files
"n��

while ��IN�
  

if��Average runtime for test��������
�������
 is� ���������
�
  

�average � ���

print OUT �The average runtime for test����� is� �average "n��

#

#

close�IN
�

#

close�OUT
�

	��



	��



LIST OF REFERENCES

�	�Richard Freund� Debbie Hensgen� Taylor Kidd� and Lantz Moore� Smartnet
 A
Scheduling Framework for Heterogeneous Computing� Proceedings of the Interna�
tional Symposium on Parallel Architectures� Algorithms and Networks� 	

��

���Lantz Moore� System Software Developers Desperately Need Better Simulation
Tools� In Je�rey W� Wallace� Terrence G� Beaumariage� and Yasser Dessouky�
editors� Object�Oriented Simulation Conference �OOS ����� The Society for Com�
puter Simulation International� 	

��

���Richard Freund� Taylor Kidd� and Debra Hensgen� Performance Analysis and
Measurement in SmartNet� Prepared by the SmartNet Heterogeneous Computing
Team on 
�	�	��

���Stephen L� Ambrosius� Stephen L� Scott� Richard F� Freund� and Howard Jay
Siegel� Work�based Performance Measurement and Analysis of Virtual Hetero�
geneous Machines� Heterogeneous Computing Workshop� 	

��

���Taylor Kidd� Debra Hensgen� Richard Freund� Matt Kussow� and Mark Camp�
bell� Compute Characteristics
 A Useful Characterization of Job Runtimes� In
preparation for submission �	

���

���Thomas H� Cormen� Charles E� Leiserson� and Ronald L� Rivest� Introduction to
Algorithms� The MIT Press� Cambridge� Massachusetts� 	

��

���David A� Patterson and John L� Hennessy� Computer Architecture	 A Quantitative
Approach� Morgan Kaufmann Publishers� Inc�� San Francisco� CA� second edition�
	

��

���Cray Research� Inc� CRAY Y�MP EL Functional Description� 	

��

�
�Jesse C� Benton and Michael J� Lemanski� Simulation for SmartNet Scheduling
of Asynchronous Transfer Mode Virtual Channels� Master�s thesis� U�S� Naval
Postgraduate School� June 	

��

�	��Naval Command� Control� and Ocean Surveillance Center� Research� Develop�
ment� Test and Evaluation Division� Code ���� ��	�� Gatchell Road� San Diego�
CA 
�	�������� SmartNet Scheduling Tool v
�� Users Guide� June 	

��

�		�Hartmut Pohlheim� Genetic and Evolutionary Algorithm Toolbox for use with
Matlab �GEATbx�� WWW
 http
��www�systemtechnik�tu�ilmenau�de� pohl�
heim�GA Toolbox�algoverv�html�

	��



�	��Paul Coddington� Simulated Annealing and Optimization� WWW

http
��www�npac�syr�edu�users�gcf�cps�	�montecarlo�node	���html� Northeast
Parallel Architectures Center at Syracuse University�

�	��Averill M� Law and W� David Kelton� Simulation Modeling and Analysis� Second
Edition� McGraw�Hill� Inc�� New York� 	

	�

�	��Sheldon M� Ross� A Course in Simulation� Macmillan Publishing Company� New
York� 	

��

�	��Donald E� Knuth� The Art of Computer Programming� volume �� Seminumer�
ical Algorithms� Addison�Wesley Publishing Company� Reading� Massachusetts�
second edition� 	
�	�

�	��Mathrubootham Janakiraman� Simulation Results for Heuristic Algorithms for
Scheduling Precedence�Related Tasks in Heterogeneous Environments� Master�s
thesis� University of Cincinnati� 	

��

�	��Sun Microsystems� SunOS Reference Manual� Volume I� Revision A of �� March
	

��

�	��David Bailey et al� The NAS Parallel Benchmarks ���� Technical Report NAS�

������ NASA Ames Research Center� December 	

��

�	
�Peter Pacheco� A User�s Guide to MPI� Technical report� Department of Math�
ematics� University of San Fransisco� March 	

��

����A� Beguelin et al� HeNCE	 A User� Guide� Oak Ridge National Laboratory and
University of Tennessee� December 	

�� The document itself is available on the
web at cs�utk�edu�

	��



INITIAL DISTRIBUTION LIST

	�Defense Technical Information Center
���� John J� Kingman Road�� Ste �
��
Ft� Belvoir� VA ��������	�

�

��Dudley Knox Library
Naval Postgraduate School
�		 Dyer Rd�
Monterey� CA 
�
����	�	

�

��Director� Training and Education
MCCDC� Code C��
	�	
 Elliot Road
Quantico� VA ��	�������

	

��Director� Marine Corps Research Center
MCCDC� Code C��RC
���� Broadway Street
Quantico� VA ��	����	��

�

��Director� Studies and Analysis Division
MCCDC� Code C��
���� Russell Road
Quantico� VA ��	����	��

	

��Marine Corps Representative
Naval Postgraduate School
Code ���� Bldg� ���� HA����
�

 Dyer Road
Monterey� CA 
�
��

	

��Marine Corps Tactical Systems Support Activity
Technical Advisory Branch
Attn
 Maj� J�C� Cumiskey
Box ���	�	
Camp Pendleton� CA 
���������

	

��Debra Hensgen
Naval Postgraduate School
Code CS�Hd� Computer Sciences Dept�
��� Dyer Rd�
Monterey� CA 
�
����		�

�

	��




�John Falby
Naval Postgraduate School
Code CS�Fa� Computer Sciences Dept�
��� Dyer Rd�
Monterey� CA 
�
����		�

	

	��H�J� Siegel
Purdue University
Room ���� EE Building
School of Electrical and Computer Engineering
	��� Electrical Engineer Building
West Lafayette� IN ��
���	���

	

		�Richard Freund� Chief Scientist
Heterogeneous Computing Team
NCCOSC RDTE Div ���	 Rm ��	A
��		� Gatchell Road
San Diego� CA 
�	�������

	

	��Taylor Kidd
Naval Postgraduate School
Code CS�Kt� Computer Sciences Dept�
��� Dyer Rd�
Monterey� CA 
�
����		�

	

	��Viktor Prasanna
University of Southern California
Department of EE�Systems� EEB ���C
���� McClintock Ave�
Los Angeles� CA 
���
�����

	

	��Major Bob Armstrong� USMC
���� Hall Lane
Twentynine Palms� CA 
������	
�

	

	��Mr� and Mrs� R� K� Armstrong
	�� Haverford Drive
Nashville� TN �����

	

	��


